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SECTION A (Mathematics 1 and 2)

A1.
⇒    

1 1 3 2
2 1 1 2
3 2 5 5

1 1 3 2
−1 −5 −2
−1 −4 −1

⇒  
1 1 3 2

−1 −5 −2
−1 −1

z = 1;  y = −3;  x = 2

Second row 1 mark
Third row 1 mark

Third row 1 mark

Values 2E1.

Total 5
(available whatever method used above)

A2. i4 + 4i3 + 3i2 + 4i + 2

= 1 − 4i − 3 + 4i + 2 = 0
Since  is a root,  must also be a
root.  Thus factors  and 
give a quadratic factor .

i −i
(z − i) (z + i)

z2 + 1

z2 + 4z + 2
z2 + 1 z4 + 4z3 + 3z2 + 4z + 2

z4 + z2

4z3 + 2z2 + 4z
4z3 + 4z

2z2 + 2
Solving  givesz2 + 4z + 2 = 0

z = −2 ± 2.
Total 5

1 mark for verifying and stating

1 for the other two roots.

1 for factorisation.

1 for getting .−i

1 for  is a factor.z2 + 1

A3. At ,  so  giving
 or .  When ,
.  When ,  so  is

on the curve.

A x = −1 t2 + t − 1 = −1
t = 0 t = −1 t = 0
y = 2 t = −1 y = 5 A

dx
dt

= 2t + 1;
dy
dt

= 4t − 1

dy
dx

= 4t − 1
2t + 1

.

When , .t = −1 dy
dx = −5

−1 = 5
The equation is

(y − 5) = 5 (x + 1)

y = 5x + 10 Total 6

1 for solving a quadratic.

1 for the other coordinate.

1 for the gradient is 5.

1 for an equation.

1 for  and .dx
dt

dy
dt

1 for .dy
dx
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A4. f (x) = xe−x = x1/2e−x(a)

f ′ (x) = 1
2x−1/2e−x + x1/2 (−1) e−x

= 1
2 x

 e−x (1 − 2x)

y = (x + 1)2 (x + 2)−4(b)

logy = 2 log(x + 1) − 4 log(x + 2)
1
y

 dy
dx

= 2
x + 1

− 4
x + 2

 dy
dx

= ( 2
x + 1

− 4
x + 2) y

; a = 2 b = −4 Total 7

1 method mark 1 for first term
1 for second term

1 for taking logs and

1 for a factorised form

1 for differentiating

1 for rearranging

expanding
A logarithmic
approach is
needed.

A5. ∫
 1

0
ln (1 + x)  dx

= ∫
 1

0
ln (1 + x)  . 1  dx

= ⎡⎢⎣x ln (1 + x) − ∫ 1
1 + x

.x dx⎤⎥⎦

1

0

= ⎡⎢⎣x ln (1 + x) − ∫ (1 − 1
1 + x

 ) dx⎤⎥⎦

1

0

= [x ln (1 + x) − x + ln (1 + x)]1
0

= [ln 2 − 1 + ln 2] − [0 − 0 + 0]
= 2 ln 2 − 1 [≈ 0.3863] . Total 5

1 for introducing the factor of 1

1 for second term

1 for limits

2 marks for correct manipulation
and integration of the second term

A6. x + 2 = 2 tanθ ⇒ dx = 2 sec2θ dθ
Also, , sox = 2 tan θ − 2

, givingx2 = 4 tan2 θ − 8 tan θ + 4
x2 + 4x + 8 = 4 tan2 θ + 4

∫ dx
x2 + 4x + 8

= ∫ 2 sec2 θ dθ
4 (tan2 θ + 1)

= 1
2 ∫ sec2 θ dθ

tan2 θ + 1

= 1
2 ∫ dθ

= 1
2

θ + c

= 1
2

tan−1 (x + 2
2 ) + c Total 5

1 for derivative

1 for substitution

1 for manipulation

1 for simplifying

1 for finishing
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A7. When ,  so
true when .

n = 1 4n − 1 = 4 − 1 = 3
n = 1

Assume  is divisible by 3.4k − 1
Consider .4k + 1 − 1

4k + 1 − 1 = 4.4k − 1

= (3 + 1) 4k − 1

= 3.4k + (4k − 1)
Since both terms are divisble by 3 the
result is true for .k + 1
Thus since true for ,  is
divisible by 3 for all .

n = 1 4n − 1
n ≥ 1

Total 5

1 for the case .n = 1
1 for the assumption.

1 for a correct formulation.

1 for conclusion.

1 for moving to .k + 1

Other
strategies
possible.

(The involvement of   not penalised.)

A8. x2

(x + 1)2 = A + B
x + 1

+ C
(x + 1)2 so

x2 = A(x + 1)2 + B(x + 1) + C

= Ax2 + (2A + B)x + A + B + C
Hence ,  and .A = 1 B = −2 C = 1

y = 1 − 2
x + 1

+ 1
(x + 1)2(a)

so there is a vertical asymptote 
and a horizontal asymptote .

x = −1
y = 1

dy
dx

= 2
(x + 1)2 − 2

(x +1)3 = 0 at SV(b)

⇒ (x + 1) = 1 ⇒ x = 0, y = 0

d2y
dx2 = −4

(x + 1)3 + 6
(x + 1)4

= −4 + 6 when x = 0
Thus  is a minimum.(0,  0)
(c)

Total 11

1 for valid method

2E1 for the values

1 for vertical asymptote
1 for horizontal asymptote

1 for derivative (however obtained)

1 for solving

1 for justification

1 for asymptotes
1 for branches

1 for  is a minimum(0,  0)

1 for each
branch

or
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A9. (a)

dy
dx

=
dy
dt
dx
dt

= −xy2

−x2y
= y

x

∫ 1
y

 dy = ∫ 1
x

 dx

ln y = ln x + C

x = 1, y = 2 ⇒ C = ln 2

ln y = ln x + ln 2

y = 2x
(b)

dx
dt

= −x2 (2x) = −2x3

∫ 1
x3 dx = ∫ −2 dt

x−2

−2
= −2t + D

1
x2 = 4t − 2D

t = 0, x = 1 ⇒ D = −1
2

1
x2 = 4t + 1

x = 1
4t + 1 Total 10

1 mark

1 mark

1 mark
1 mark for evaluating

1 mark for formula

1 mark

1 mark

1 mark

1 mark

1 mark

C
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A10. Sn (1) = 1 + 2 + 3 +  …  + n

= 1
2n (n + 1)

(1 − x) Sn (x) = Sn (x) − xSn (x)

= 1 + 2x + 3x2 +… +nxn − 1

− (x + 2x2 + 3x3 +… +nxn)
= 1 + x + x2 +  …  + xn−1 − nxn

= 1 − xn

1 − x
− nxn.

Thus

Sn (x) = 1 − xn

(1 − x)2 − nxn

(1 − x)
as required.

2
3

+ 3
32 + 4

33 +  …  + n
3n−1 + 3

2
·
n
3n

= (Sn (1
3) − 1) + 3

2
·
n
3n

=
1 − 1

3n

(1 − 1
3)2 −

n 1
3n

1 − 1
3

− 1 + 3
2

·
n
3n

= 9
4 (1 − 1

3n) − 3
2

·
n
3n − 1 + 3

2
·
n
3n

= 5
4 (1 − 1

3n)
lim
n→ ∞

{2
3

+ 3
32 + 4

33 +  …  + n
3n−1 + 3

2
·
n
3n}

= 5
4 Total 9

1 for recognising that it relates to
.Sn (1

3)

1 for applying earlier result.

1 for obtaining the limit.

1 for recognising that  requires
special treatment.

Sn (1)

1 for evaluating it correctly.

3E1 for expanding correctly and
simplifying

1 for applying the sum of a GP
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SECTION B (Mathematics 3)

B1. (a) ; AB
→

= 2i − k AC
→

= i − j − 3k

AB
→

× AC
→

= | |i j k
2 0 −1
1 −1 −3

= −i + 5j − 2k
Equation of  is of the formπ1

−x + 5y − 2z = c

(1,1,0) ⇒ c = −1 + 5 = 4
So an equation is

−x + 5y − 2z = 4
(b) Normals are 

 and .−i + 5j − 2k i + 2j + k
So the angle between the planes
is given by

cos−1 (−1 + 10 − 2
30 6 )

= cos−1 7
6 5

[≈ 58.6°] Total 7

1 for the two initial vectors

1 for a cross product

1 for the normal vector

1 for the equation

1 for normals

1 for applying the scalar product

1 for result (must be acute)

Vector
form
acceptable.

B2. .  When ,

RHS .

An = ( )n + 1 n
−n 1 − n n = 1

= ( ) = ( ) = A1 + 1 1
−1 1 − 1

2 1
−1 0

Therefore true when .n = 1

Assume .Ak = ( )k + 1 k
−k 1 − k

Consider .Ak + 1

Ak + 1 = A.Ak

= ( ) ( )2 1
−1 0

k + 1 k
−k 1 − k

= ( )k + 2 k + 1
− (k + 1) −k

= ( )(k + 1) + 1 (k + 1)
− (k + 1) 1 − (k + 1)

Thus if true for  then true for .k k + 1
Since true for , by induction, true
for all .

n = 1
n ≥ 1 Total 6

1 for stating the assumption

1 for obtaining final matrix

1 for this matrix

1 for conclusion

1 mark for showing true when n = 1

1 for considering k + 1
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B3. f (x) = ln (cos x) f (0) = 0
f ′(x) = − sin x

cosx = − tanx f ′(0) = 0
f ″ (x) = − sec2 x f ″ (0) = −1

f ′′′(x) = −2 sec2x tanx f ′′′(0) = 0
f ′′′′(x) = −4 sec3x tan2x

−2 sec4 x f ′′′′(0) = −2

f (x) = f (0) + xf ′(0) +…

ln(cosx) = 0 + 0.x − 1.x
2

2
+ 0.x − 2.x

4

4!

= −x2

2
− x4

12
+… Total 5

1 for first two derivatives

1 for third and fourth derivatives

1 for evaluation at 0

1 method mark for series

1 for an expansion

Using series for
log and cos can
gain full marks.

B4. A = ( )1 0
0 −1

B = ( ) = 1
2 ( )cos30° − sin30°

sin30° cos30°
3 −1

1 3

BA ( ) = 1
2 ( ) ( ) ( )x

y
3 −1

1 3
1 0
0 −1

x
y

= 1
2 ( ) ( ) = 1

2 ( )3 1
1 − 3

x
y

3x + y
x − 3y

i.e.(x, y) → 1
2 ( 3x + y, x − 3y)

sok = 3. Total 4

1 for A

1 for B

1 method for tackling a compostion

1 for value of k
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B5. d2y
dx2 + 2

dy
dx

+ 5y = 4 cos x

A.E. is  m2 + 2m + 5 = 0

⇒ m = −1 ± 2i
C. F. is y = e−x (A cos 2x + B sin 2x)
For P.I. try f (x) = a cos x + b sin x

f ′ (x) = −a sin x + b cos x

f ″ (x) = −a cos x − b sin x
Thus
(4a + 2b) cosx + (4b − 2a) sinx = 4 cosx

⇒ a = 2b ⇒ 10b = 4

⇒ b = 2
5 anda = 4

5

y(x) = e−x(Acos2x + B sin2x)
+2

5 (2 cosx + sinx)
y(0) = 0 ⇒ A + 4

5 = 0 ⇒ A = −4
5

y′(x) = e−x(−2A sin2x + 2Bcos2x) −

e−x(Acos2x + B sin2x) + 2
5 (cosx − 2 sinx)

 y′(0) = 1 ⇒ 2B − A + 2
5 ⇒ B = − 1

10

y = e−x

10
(−8 cos2x − sin 2x)

+2
5

(2 cosx + sin x) Total 10

1 for auxiliary equation
1 for roots

1 for form of complementary function

1 for derivatives

1 for substitution

1 for values

1 for derivative

1 for final statement

1 for value of B

1 for value of A

Use of a wrong
PI loses 2 of
these 3 marks.
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SECTION C (Statistics 1)

C1. Quota sampling, 1

One advantage of this method is that no sampling frame is required. 1
One disadvantage is that it can lead to biased results. 1

C2. P (B born same day as A and C born same day as A) = 1/7 × 1/7 = 1/49. 1

1/365 × 1/365 = 1/133225 1
 = 133224 to 1 (which is well away from 160 000 to 1) so disagree 1

50000 × 1/33225 =0.375 1
so about once every 3 years (or 3 times in 8 years) 1

C3. Assume that standard deviation is still 28 seconds. 1
⎫

⎭
⎬ 1

H0 : µ = 453
H1 : µ ≠ 453

z = x¯ − µ
σ / n

= 442 − 453
28 / 50

= −2.78 1

P (z < −2.78) = Φ (−2.78) = 1 − 0.9973 = 0.0027
so that the p-value 1= 2 × 0.0027 = 0.0054

 so reject  at the 1% level. 10.0054 < 0.01 H0

i.e. there is evidence that the mean service time has changed. 1

C4. pˆ ± 2.58
pˆ qˆ
n

1

= 80
250

± 2.58
80
250 × 170

250

250
1

= 0.32 ± 0.08 (or 0.24 → 0.40) 1
In the long term 99 out of 100 of intervals calculated using 99% 
confidence will contain the ‘true’ value of the parameter being estimated. 1
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C5. The number of shock reactions in groups of 1200 will have the binomial
distribution with parameters  and . 1n = 1200 p = 1 / 2000

This distribution can be approximated by the Poisson distribution 
with parameter . 11200 × 1 / 2000 = 0.6
P (X > 2) = 1 − P (X ≤ 2) 1

= 1 − (e−0.6.0.60

0!
+ e−0.6.0.61

1!
+ e−0.6.0.62

2! )
= 1 − (0.54881 + 0.32929 + 0.09879)

= 1 − 0.97689 = 0.023 1
(arithmetical working not required as could be done on a Ti83)

C6. (a) 1P (X < 25)

= P (Z < 25 − 25.5
0.4 )

= P (Z < −1.25) 1

= 1 − Φ (1.25) = 1 − 0.8944 = 0.1056 1
(b) The distribution of the number of underweight bags is binomial 1

with parameters  and . 1n = 40 p = 0.1056
P(No underweight bags) 1= 40C0 (0.1056)0 (0.8944)40 = 0.0115

(c) The mean weight of the sample of 40 bags must be less than 25 kg. 1

P (X
⎯

< 25) = P (Z < 25 − 25.5
0.4 / 40 ) 1

= P (Z < −7.9) 1

≈ 0 1
or

T ∼ N (1020,  6.4)

and P (T < 1000) = P (Z < −7.9)

≈ 0.
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SECTION D (Numerical Analysis 1)

D1. L(x) = (x − 1.3)(x − 1.8)
(−0.3)(−0.8)

0.758 + (x − 1.0)(x − 1.8)
(0.3)(−0.5)

1.106 + (x − 1.0)(x − 1.3)
(0.8)(0.5)

0.994

= (x2 − 3.1x + 2.34)3.158 − (x2 − 2.8x + 1.8)7.373 + (x2 − 2.3x + 1.3)2.485

= −1.730x2 + 5.139x − 2.651 4

D2. f (x) = sin 2x; ;f ′ (x) = 2 cos 2x f ″ (x) = −4 sin 2x;

f ′′′ (x) = −8 cos 2x; f iv (x) = 16 sin 2x
Taylor polynomial is

p (π
4

+ h) = sin
π
2

− 4h2

2
 sin

π
2

+ 16h4

24
 sin

π
2

= 1 − 2h2 + 2
3h4 3

 and sin 96° = sin (π / 2 + π / 30) h = π / 60
Second degree approximation is

1 − 2 ( π
60)2

= 1 − 0.0055 = 0.9945 2

Principal truncation error term is 2
3 ( π

60)4 ≈ 0.000005
Hence second order estimate should be accurate to 4 decimal places. 2

D3. Let quadratic through , ,  be(x0, f 0) (x1, f 1) (x2, f 2)
y = A0 + A1 (x − x0) + A2 (x − x0) (x − x1) .

Then ; ;f 0 = A0 f 1 = A0 + A1h f 2 = A0 + 2A1h + 2A2h2

and so ; .A1 = f 1 − f 0

h
= △f 0

h
A2 = f 2 − 2f 1 + f 0

2h2 = △2f 0

2h2

Thus .y = f 0 + x − x0

h
 △f 0 + (x − x0) (x − x1)

2h2  △2f 0

Setting , where , givesx = x0 + ph 0 < p < 1
y = f 0 + p△f 0 + 1

2p (p − 1) △2f 0 5
(Can also be done by an operator expansion of .)(1 + △)p

D4. (a) Maximum error is . i.e. . 18ε 8 × 0.0005 = 0.004

(b) 1△2f 1 = 0.045

(c) Third degree polynomial would be suitable (constant differences). 1

(d) Working from , x = 3.2 p = 0.1

f (0.321) = 0.459 + 0.1(0.224) + (0.1)(−0.9)
2

(0.051) + (0.1)(−0.9)(−1.9)
6

(0.009)

= 0.459 + 0.022 − 0.002 + 0.000 = 0.479 3
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D5. (a) Simpson's rule calculation is:
x f (x) m1 m1 f 1 (x) m2 m2 f 2 (x)
1 0.4657 1 0.4657 1 0.4657
1.5 0.8320 4 3.3280
2 1.1261 4 4.5044 2 2.2522
2.5 1.0984 4 4.3936
3 0.8238 1 0.8238 1 0.8238

5.7939 11.2633

Hence I2 = 5.7939 / 3 = 1.9313
and I4 = 11.2633 × 0.5 / 3 = 1.8772

4

(b) Maximum truncation error 1≈ 2 × 0.324 / 180 = 0.0036

Hence suitable estimate is 1I4 = 1.88

(c) With  strips and step size , the Taylor series for expansion of an
integral approximated by Simpson's rule (with principal truncation error
of ) is

n 2h

O (h2)
I = In + C (2h)4 + D (2h)6 +  …  = In + 16Ch4 (1)

With  strips and step size , we have2n h

I = I2n + Ch4 + Dh6 +  … (2)
 gives 16 × (2) − (1) 15I = 16I2n − In + O (h6)

i.e.  3I ≈ (16I2n − In) / 15 = I2n + (I2n − In) / 15

I3 = 1.8772 + (1.8772 − 1.9313) / 15 = 1.8736
or 1.874 to suitable accuracy 1
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SECTION E (Mechanics 1)

E1. (a) From the equation of motion for the vertical motion

y˙ = V sin 45° − gt = 1
2

V − gt. 1

The shell attains its maximum height when

y˙ = 0 ⇒ V = 2 gt = 69.3 m s−1 . 1

(b) The shell hits the ground again after 10 seconds.  From the equation of
motion for horizontal motion

x = V cos 45°t = 1
2

 Vt. 1

The range is 

R = 1
2

 Vt ≈ 490 m. 1

E2. (a) The position of the car is
xC = 1

2 at2, 1
and the position of the lorry

xL = Ut + 1
4 at2. 1

When the car and the lorry draw level
xC = xL 1

⇔ t (1
4at − U ) = 0

⇔ t = 0 or  t = 4U
a

and as  we take . 1t > 0 t = 4U
a

(b) When the car draws level with the lorry it has travelled

xC = 1
2

 a (4U
a )2

= 8U 2

a
. 1

E3. (a) Resolving perpendicular to the plane
N + P sin 30° = mg cos 30° 1

⇒ N = 3 g − 1
2P

= 1
2 (2 3 g − P) . 1

The frictional force is 
F = µN = 1

4 (2 3 g − P) . 1
(b) Resolving parallel to the plane and using Newton II

P cos 30° = mg sin 30° + F 1

⇔ 3
2

P = g + 1
4

(2 3 g − P)
⇔ 1

2 ( 3 + 1
2) P = (1 + 1

2 3) g 1

⇔ P = 2 (2 + 3) g
(2 3 + 1) ≈ 16·4 N . 1
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E4. (a) Resolving forces horizontally gives
T1 cos 30° = T2 cos 60° 1

⇒ 3
2

 T1 = 1
2

T2

⇒ T2 = 3 T1 > T1. 1
(b) Resolving forces vertically and using Newton II

ma = T1 sin 30° + T2 sin 60° − mg 1

⇒ 1
2

T1 + 3
2

T2 = m (a + g) 1

1
2

 1
3

 T2 + 3
2

T2 = m (a + g) 1

1
2 ( 1

3
+ 3) T2 = m (a + g)

⇒ T2 = 3
2

m (a + g) 1

E5. (a) Since , .aA = −2
5ti vA (t) = −1

5t2i + c
Since , we have  sovA (0) = 10i c = 10i

vA (t) = (10 − 1
5t2) i 1

Integrating again gives
rA (t) = (10t − 1

15t3) i + c2

but since  then  andr (0) = 0 c2 = 0

rA (t) = t
15

(150 − t2) i 1

(b)(i)
r˙ B = 1

15 {75 − 3t2} i = 0 when 1
3t2 = 75. 1

t = 5
 t = 5 rB = 1

15 {45 + 375 − 125} i + 4jWhen
= 59

3 i + 4j. 1

So the distance from the origin 1= (59
3 )2

+ 42 ≈ 20.1 m

rA − rB = 1
15t (150 − t2) i − 1

15 (45 + 75t − t3) j − 4j   (ii)

= 1
15 (75t − 45) i − 4j = (5t − 3) i − 4j 1

| rA − rB |2 = (5t − 3)2 + 16 1
To find the minimum value

d
dt

(| rA − rB |2) = 2 (5t − 3) × 5 = 0 1

so the minimum occurs when . 1t = 3
5

The minimum distance is then . 116 = 4 m

[END OF MARKING INSTRUCTIONS]
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