2002 Mathematics

Advanced Higher

Finalised Marking Instructions

SECTION A (Mathematics 1 and 2)

Second row 1 mark
Third row 1 mark

Third row 1 mark
Values 2E1.
(available whatever method used above)
Total 5

A2.

$$
\begin{gathered}
i^{4}+4 i^{3}+3 i^{2}+4 i+2 \\
=1-4 i-3+4 i+2=0
\end{gathered}
$$

Since i is a root, $-i$ must also be a root. Thus factors $(z-i)$ and $(z+i)$ give a quadratic factor $z^{2}+1$.

$$
\begin{aligned}
& \begin{array}{r}
z^{2}+1 \begin{array}{r}
z^{2}+4 z+2 \\
z^{4}+4 z^{3}+3 z^{2}+4 z+2 \\
z^{4}+z^{2}
\end{array} \\
\begin{array}{c}
4 z^{3}+2 z^{2}+4 z
\end{array}
\end{array} \\
& \frac{4 z^{3}+4 z}{2 z^{2}}+2
\end{aligned}
$$

Solving $z^{2}+4 z+2=0$ gives

$$
z=-2 \pm \sqrt{2}
$$

1 mark for verifying and stating
1 for getting $-i$.
1 for $z^{2}+1$ is a factor.

1 for factorisation.

1 for the other two roots.

A3. At $A, x=-1$ so $t^{2}+t-1=-1$ giving $t=0$ or $t=-1$. When $t=0$, $y=2$. When $t=-1, y=5$ so A is on the curve.

$$
\begin{gathered}
\frac{d x}{d t}=2 t+1 ; \frac{d y}{d t}=4 t-1 \\
\frac{d y}{d x}=\frac{4 t-1}{2 t+1} .
\end{gathered}
$$

When $t=-1, \frac{d y}{d x}=\frac{-5}{-1}=5$.
The equation is

$$
\begin{aligned}
(y-5) & =5(x+1) \\
y & =5 x+10
\end{aligned}
$$

1 for solving a quadratic.
1 for the other coordinate.
1 for $\frac{d x}{d t}$ and $\frac{d y}{d t}$.
1 for $\frac{d y}{d x}$.
1 for the gradient is 5 .

1 for an equation.

A4.

$$
\text { (a) } \begin{aligned}
f(x) & =\sqrt{x} e^{-x}=x^{1 / 2} e^{-x} \\
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} e^{-x}+x^{1 / 2}(-1) e^{-x} \\
& =\frac{1}{2 \sqrt{x}} e^{-x}(1-2 x)
\end{aligned}
$$

(b) $\quad y=(x+1)^{2}(x+2)^{-4}$ $\log y=2 \log (x+1)-4 \log (x+2)$

$$
\frac{1}{y} \frac{d y}{d x}=\frac{2}{x+1}-\frac{4}{x+2}
$$

1 method mark 1 for first term 1 for second term

1 for a factorised form

1 for taking logs and expanding
1 for differentiating

$$
\frac{d y}{d x}=\left(\frac{2}{x+1}-\frac{4}{x+2}\right) y
$$

1 for rearranging

$$
a=2 ; b=-4
$$

A5.

$$
\begin{aligned}
& \int_{0}^{1} \ln (1+x) d x \\
= & \int_{0}^{1} \ln (1+x) .1 d x \\
= & {\left[x \ln (1+x)-\int \frac{1}{1+x} x d x\right]_{0}^{1} } \\
= & {\left[x \ln (1+x)-\int\left(1-\frac{1}{1+x}\right) d x\right]_{0}^{1} } \\
= & {[x \ln (1+x)-x+\ln (1+x)]_{0}^{1} } \\
= & {[\ln 2-1+\ln 2]-[0-0+0] } \\
= & 2 \ln 2-1[\approx 0.3863] .
\end{aligned}
$$

1 for introducing the factor of 1

1 for second term

2 marks for correct manipulation and integration of the second term

1 for limits

A6. $x+2=2 \tan \theta \Rightarrow d x=2 \sec ^{2} \theta d \theta$
Also, $x=2 \tan \theta-2$, so
$x^{2}=4 \tan ^{2} \theta-8 \tan \theta+4$, giving
$x^{2}+4 x+8=4 \tan ^{2} \theta+4$
$\int \frac{d x}{x^{2}+4 x+8}=\int \frac{2 \sec ^{2} \theta d \theta}{4\left(\tan ^{2} \theta+1\right)}$
$=\frac{1}{2} \int \frac{\sec ^{2} \theta d \theta}{\tan ^{2} \theta+1}$
$=\frac{1}{2} \int d \theta$
$=\frac{1}{2} \theta+c$
$=\frac{1}{2} \tan ^{-1}\left(\frac{x+2}{2}\right)+c$

1 for derivative

1 for manipulation

1 for substitution

1 for simplifying

1 for finishing

A7. When $n=1,4^{n}-1=4-1=3$ so true when $n=1$.
Assume $4^{k}-1$ is divisible by 3 .
Consider $4^{k+1}-1$.

$$
\begin{aligned}
4^{k+1}-1 & =4.4^{k}-1 \\
& =(3+1) 4^{k}-1 \\
& =3 \cdot 4^{k}+\left(4^{k}-1\right)
\end{aligned}
$$

Since both terms are divisble by 3 the result is true for $k+1$.
Thus since true for $n=1,4^{n}-1$ is divisible by 3 for all $n \geqslant 1$.

1 for the case $n=1$.
1 for the assumption.
Other strategies possible.
1 for moving to $k+1$.

1 for a correct formulation.

1 for conclusion.
(The involvement of Enot penalised.) Total 5

A8.

$$
\begin{aligned}
& \frac{x^{2}}{(x+1)^{2}}=A+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} \text { so } \\
& x^{2}=A(x+1)^{2}+B(x+1)+C \\
& \quad=A x^{2}+(2 A+B) x+A+B+C
\end{aligned}
$$

Hence $A=1, B=-2$ and $C=1$.
(a) $y=1-\frac{2}{x+1}+\frac{1}{(x+1)^{2}}$
so there is a vertical asymptote $x=-1$ and a horizontal asymptote $y=1$.
(b) $\frac{d y}{d x}=\frac{2}{(x+1)^{2}}-\frac{2}{(x+1)^{3}}=0$ at SV

$$
\Rightarrow(x+1)=1 \Rightarrow x=0, y=0
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{-4}{(x+1)^{3}}+\frac{6}{(x+1)^{4}}
$$

$$
=-4+6 \text { when } x=0
$$

Thus $(0,0)$ is a minimum.
(c)

1 for valid method
2 E1 for the values
1 for vertical asymptote
1 for horizontal asymptote
1 for derivative (however obtained)
1 for solving
1 for justification
1 for 0) is a minimum
1 for asymptotes or 1 for each
1 for branches
1

A9.
(a)

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-x y^{2}}{-x^{2} y}=\frac{y}{x} \\
\int \frac{1}{y} d y=\int \frac{1}{x} d x \\
\ln y=\ln x+C \\
x=1, y=2 \Rightarrow C=\ln 2 \\
\ln y=\ln x+\ln 2 \\
y=2 x
\end{gathered}
$$

(b)

$$
\begin{gathered}
\frac{d x}{d t}=-x^{2}(2 x)=-2 x^{3} \\
\int \frac{1}{x^{3}} d x=\int-2 d t \\
\frac{x^{-2}}{-2}=-2 t+D \\
\frac{1}{x^{2}}=4 t-2 D \\
t=0, x=1 \Rightarrow D=-\frac{1}{2} \\
\frac{1}{x^{2}}=4 t+1 \\
x=\frac{1}{\sqrt{4 t+1}}
\end{gathered}
$$

1 mark

1 mark

1 mark
1 mark for evaluating C

1 mark for formula

1 mark

1 mark

1 mark

1 mark

1 mark

A10.

$$
\begin{aligned}
& S_{n}(1)=1+2+3+\ldots+n \\
& =\frac{1}{2} n(n+1) \\
& \begin{array}{c}
(1-x) S_{n}(x)=S_{n}(x)-x S_{n}(x) \\
=1+2 x+3 x^{2}+\ldots+n x^{n-1} \\
-\left(x+2 x^{2}+3 x^{3}+\ldots+n x^{n}\right) \\
=1+x+x^{2}+\ldots+x^{n-1}-n x^{n} \\
= \\
=\frac{1-x^{n}}{1-x}-n x^{n}
\end{array}
\end{aligned}
$$

Thus

$$
S_{n}(x)=\frac{1-x^{n}}{(1-x)^{2}}-\frac{n x^{n}}{(1-x)}
$$

as required.

$$
\begin{aligned}
& \quad \frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\ldots+\frac{n}{3^{n-1}}+\frac{3}{2} \cdot \frac{n}{3^{n}} \\
& =\left(S_{n}\left(\frac{1}{3}\right)-1\right)+\frac{3}{2} \cdot \frac{n}{3^{n}} \\
& =\frac{1-\frac{1}{3^{n}}}{\left(1-\frac{1}{3}\right)^{2}}-\frac{n \frac{1}{3^{n}}}{1-\frac{1}{3}}-1+\frac{3}{2} \cdot \frac{n}{3^{n}} \\
& =\frac{9}{4}\left(1-\frac{1}{3^{n}}\right)-\frac{3}{2} \cdot \frac{n}{3^{n}}-1+\frac{3}{2} \cdot \frac{n}{3^{n}} \\
& =\frac{5}{4}\left(1-\frac{1}{3^{n}}\right) \\
& \lim _{n \rightarrow \infty}\left\{\frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\ldots+\frac{n}{3^{n-1}}+\frac{3}{2} \cdot \frac{n}{3^{n}}\right\} \\
& =\frac{5}{4}
\end{aligned}
$$

1 for recognising that $S_{n}(1)$ requires special treatment.
1 for evaluating it correctly.

3E1 for expanding correctly and simplifying

1 for applying the sum of a GP

1 for recognising that it relates to $S_{n}\left(\frac{1}{3}\right)$.

1 for applying earlier result.

1 for obtaining the limit.

SECTION B (Mathematics 3)

B1.
(a) $\overrightarrow{A B}=2 \mathbf{i}-\mathbf{k} ; \overrightarrow{A C}=\mathbf{i}-\mathbf{j}-3 \mathbf{k}$

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 0 & -1 \\
1 & -1 & -3
\end{array}\right| \\
& =-\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}
\end{aligned}
$$

Equation of π_{1} is of the form

$$
\begin{gathered}
-x+5 y-2 z=c \\
(1,1,0) \Rightarrow c=-1+5=4
\end{gathered}
$$

So an equation is

$$
-x+5 y-2 z=4
$$

(b) Normals are
$-\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}+\mathbf{k}$.
So the angle between the planes is given by

$$
\begin{aligned}
& \cos ^{-1}\left(\frac{-1+10-2}{\sqrt{30} \sqrt{6}}\right) \\
= & \cos ^{-1} \frac{7}{6 \sqrt{5}}\left[\approx 58.6^{\circ}\right]
\end{aligned}
$$

B2.
$A^{n}=\left(\begin{array}{cc}n+1 & n \\ -n & 1\end{array}\right)$. When $n=1$,
RHS $=\left(\begin{array}{cc}1+1 & 1 \\ -1 & 1-1\end{array}\right)=\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)=A$.
Therefore true when $n=1$.
Assume $A^{k}=\left(\begin{array}{cc}k+1 & k \\ -k & 1-k\end{array}\right)$.
Consider A^{k+1}.

$$
\begin{gathered}
A^{k+1}=A \cdot A^{k} \\
=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
k+1 & k \\
-k & 1-k
\end{array}\right) \\
=\left(\begin{array}{cc}
k+2 & k+1 \\
-(k+1) & -k
\end{array}\right) \\
=\left(\begin{array}{cc}
(k+1)+1 & (k+1) \\
-(k+1) & 1-(k+1)
\end{array}\right)
\end{gathered}
$$

Thus if true for k then true for $k+1$.
Since true for $n=1$, by induction, true for all $n \geqslant 1$.
.

1 for the two initial vectors

1 for a cross product

1 for the normal vector

1 for the equation

1 for normals

1 for applying the scalar product

1 for result (must be acute) Total 7

1 mark for showing true when $n=1$
1 for stating the assumption

1 for considering $k+1$

1 for this matrix

1 for obtaining final matrix

1 for conclusion
Total 6

B3.

$$
\begin{aligned}
f(x)=\ln (\cos x) & f(0)=0 \\
f^{\prime}(x)=\frac{-\sin x}{\cos x}=-\tan x & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-\sec ^{2} x & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=-2 \sec ^{2} x \tan x & f^{\prime \prime \prime}(0)=0 \\
f^{\prime \prime \prime \prime}(x)=-4 \sec ^{3} x \tan ^{2} x & \\
-2 \sec ^{4} x & f^{\prime \prime \prime \prime}(0)=-2 \\
f(x) & =f(0)+x f^{\prime}(0)+\ldots \\
\ln (\cos x) & =0+0 \cdot x-1 \cdot \frac{x^{2}}{2}+0 . x-2 \cdot \frac{x^{4}}{4!} \\
& =-\frac{x^{2}}{2}-\frac{x^{4}}{12}+\ldots
\end{aligned}
$$

B4.

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
B=\left(\begin{array}{cc}
\cos 30^{\circ} & -\sin 30^{\circ} \\
\sin 30^{\circ} & \cos 30^{\circ}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right) \\
B A\binom{x}{y}=\frac{1}{2}\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y} \\
=\frac{1}{2}\left(\begin{array}{cc}
\sqrt{3} & 1 \\
1 & -\sqrt{3}
\end{array}\right)\binom{x}{y}=\frac{1}{2}\binom{\sqrt{3} x+y}{x-\sqrt{3} y} \\
\text { i.e. }(x, y) \rightarrow \frac{1}{2}(\sqrt{3} x+y, x-\sqrt{3} y) \\
\operatorname{so} k=\sqrt{3} .
\end{gathered}
$$

1 for first two derivatives

1 for third and fourth derivatives
1 for evaluation at 0

1 method mark for series
Using series for \log and cos can gain full marks.
1 for an expansion Total 5

1 for A

1 for B

1 method for tackling a compostion

1 for value of k
Total 4

B5.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=4 \cos x \\
& \text { A.E. is } m^{2}+2 m+5=0 \\
& \quad \Rightarrow m=-1 \pm 2 i
\end{aligned}
$$

C. F. is $y=e^{-x}(A \cos 2 x+B \sin 2 x)$

For P.I. $\operatorname{try} f(x)=a \cos x+b \sin x$

$$
\begin{aligned}
f^{\prime}(x) & =-a \sin x+b \cos x \\
f^{\prime \prime}(x) & =-a \cos x-b \sin x
\end{aligned}
$$

Thus

$$
\begin{gathered}
(4 a+2 b) \cos x+(4 b-2 a) \sin x=4 \cos x \\
\Rightarrow a=2 b \Rightarrow 10 b=4 \\
\Rightarrow b=\frac{2}{5} \text { and } a=\frac{4}{5} \\
y(x)=e^{-x}(A \cos 2 x+B \sin 2 x) \\
+\frac{2}{5}(2 \cos x+\sin x) \\
y(0)=0 \Rightarrow A+\frac{4}{5}=0 \Rightarrow A=-\frac{4}{5} \\
y^{\prime}(x)=e^{-x}(-2 A \sin 2 x+2 B \cos 2 x)- \\
e^{-x}(A \cos 2 x+B \sin 2 x)+\frac{2}{5}(\cos x-2 \sin x) \\
y^{\prime}(0)=1 \Rightarrow 2 B-A+\frac{2}{5} \Rightarrow B=-\frac{1}{10} \\
y=\frac{e^{-x}}{10}(-8 \cos 2 x-\sin 2 x) \\
\quad+\frac{2}{5}(2 \cos x+\sin x)
\end{gathered}
$$

1 for auxiliary equation
1 for roots
1 for form of complementary function

1 for derivatives

Use of a wrong PI loses 2 of these 3 marks.

1 for values

1 for value of A

1 for derivative
1 for value of B

1 for final statement

SECTION C (Statistics 1)

C1. Quota sampling,

One advantage of this method is that no sampling frame is required.

C2. $\quad P(B$ born same day as A and C born same day as $A)=1 / 7 \times 1 / 7=1 / 49$.
$1 / 365 \times 1 / 365=1 / 133225$
$=133224$ to 1 (which is well away from 160000 to 1) so disagree
$50000 \times 1 / 33225=0.375$
so about once every 3 years (or 3 times in 8 years)

C3. Assume that standard deviation is still 28 seconds.
$H_{0}: \mu=453$
$\left.H_{1}: \mu \neq 453\right\}$
$z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{442-453}{28 / \sqrt{50}}=-2.78$
$\mathrm{P}(z<-2.78)=\Phi(-2.78)=1-0.9973=0.0027$
so that the p -value $=2 \times 0.0027=0.0054$
$0.0054<0.01$ so reject H_{0} at the 1% level.
i.e. there is evidence that the mean service time has changed.

C4.

$$
\begin{aligned}
& \hat{p} \pm 2.58 \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
= & \frac{80}{250} \pm 2.58 \sqrt{\sqrt{\frac{80}{250} \times \frac{170}{250}}} \\
= & 0.32 \pm 0.08(\text { or } 0.24 \rightarrow 0.40)
\end{aligned}
$$

In the long term 99 out of 100 of intervals calculated using 99%
confidence will contain the 'true' value of the parameter being estimated.

C5. The number of shock reactions in groups of 1200 will have the binomial distribution with parameters $n=1200$ and $p=1 / 2000$.

This distribution can be approximated by the Poisson distribution
with parameter $1200 \times 1 / 2000=0.6$.
$\mathrm{P}(X>2)=1-\mathrm{P}(X \leqslant 2)$
$=1-\left(e^{-0.6} \cdot \frac{0.6^{0}}{0!}+e^{-0.6} \cdot \frac{0.6^{1}}{1!}+e^{-0.6} \cdot \frac{0.6^{2}}{2!}\right)$
$=1-(0.54881+0.32929+0.09879)$
$=1-0.97689=0.023$
(arithmetical working not required as could be done on a Ti83)

C6. (a) $\mathrm{P}(X<25)$
$=\mathrm{P}\left(Z<\frac{25-25.5}{0.4}\right)$
$=\mathrm{P}(Z<-1.25)$
$=1-\Phi(1.25)=1-0.8944=0.1056$
(b) The distribution of the number of underweight bags is binomial
with parameters $n=40$ and $p=0.1056$.
$\mathrm{P}($ No underweight bags $)={ }^{40} C_{0}(0.1056)^{0}(0.8944)^{40}=0.0115$
(c) The mean weight of the sample of 40 bags must be less than 25 kg .

$$
\begin{align*}
\mathrm{P}(\bar{X}<25) & =\mathrm{P}\left(Z<\frac{25-25.5}{0.4 / \sqrt{40}}\right) \\
& =\mathrm{P}(Z<-7.9) \\
& \approx 0
\end{align*}
$$

or

$$
\begin{aligned}
T & \sim N(1020,6.4) \\
\text { and } P(T<1000) & =P(Z<-7.9) \\
& \approx 0 .
\end{aligned}
$$

SECTION D (Numerical Analysis 1)

D1.

$$
\begin{aligned}
L(x) & =\frac{(x-1.3)(x-1.8)}{(-0.3)(-0.8)} 0.758+\frac{(x-1.0)(x-1.8)}{(0.3)(-0.5)} 1.106+\frac{(x-1.0)(x-1.3)}{(0.8)(0.5)} 0.994 \\
& =\left(x^{2}-3.1 x+2.34\right) 3.158-\left(x^{2}-2.8 x+1.8\right) 7.373+\left(x^{2}-2.3 x+1.3\right) 2.485 \\
& =-1.730 x^{2}+5.139 x-2.651
\end{aligned}
$$

D2.
$f(x)=\sin 2 x ;$
$f^{\prime}(x)=2 \cos 2 x ;$
$f^{\prime \prime}(x)=-4 \sin 2 x ;$

$$
f^{\prime \prime \prime}(x)=-8 \cos 2 x ; \quad f^{\text {iv }}(x)=16 \sin 2 x
$$

Taylor polynomial is

$$
\begin{aligned}
p\left(\frac{\pi}{4}+h\right) & =\sin \frac{\pi}{2}-\frac{4 h^{2}}{2} \sin \frac{\pi}{2}+\frac{16 h^{4}}{24} \sin \frac{\pi}{2} \\
& =1-2 h^{2}+\frac{2}{3} h^{4}
\end{aligned}
$$

$\sin 96^{\circ}=\sin (\pi / 2+\pi / 30)$ and $h=\pi / 60$
Second degree approximation is

$$
\begin{equation*}
1-2\left(\frac{\pi}{60}\right)^{2}=1-0.0055=0.9945 \tag{2}
\end{equation*}
$$

Principal truncation error term is $\frac{2}{3}\left(\frac{\pi}{60}\right)^{4} \approx 0.000005$
Hence second order estimate should be accurate to 4 decimal places.
D3. Let quadratic through $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right)$ be

$$
y=A_{0}+A_{1}\left(x-x_{0}\right)+A_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) .
$$

Then $f_{0}=A_{0} ; \quad f_{1}=A_{0}+A_{1} h ; \quad f_{2}=A_{0}+2 A_{1} h+2 A_{2} h^{2}$
and so $\quad A_{1}=\frac{f_{1}-f_{0}}{h}=\frac{\Delta f_{0}}{h} ; \quad \quad A_{2}=\frac{f_{2}-2 f_{1}+f_{0}}{2 h^{2}}=\frac{\Delta^{2} f_{0}}{2 h^{2}}$.
Thus $y=f_{0}+\frac{x-x_{0}}{h} \Delta f_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2 h^{2}} \Delta^{2} f_{0}$.
Setting $x=x_{0}+p h$, where $0<p<1$, gives

$$
y=f_{0}+p \Delta f_{0}+\frac{1}{2} p(p-1) \Delta^{2} f_{0}
$$

(Can also be done by an operator expansion of $(1+\Delta)^{p}$.)
D4. (a) Maximum error is 8ε.i.e. $8 \times 0.0005=0.004$.
(b) $\Delta^{2} f_{1}=0.045$
(c) Third degree polynomial would be suitable (constant differences).
(d) Working from $x=3.2, p=0.1$

$$
\begin{aligned}
f(0.321) & =0.459+0.1(0.224)+\frac{(0.1)(-0.9)}{2}(0.051)+\frac{(0.1)(-0.9)(-1.9)}{6}(0.009) \\
& =0.459+0.022-0.002+0.000=0.479
\end{aligned}
$$

D5. (a) Simpson's rule calculation is:

x	$f(x)$	m_{1}	$m_{1} f_{1}(x)$	m_{2}	$m_{2} f_{2}(x)$
1	0.4657	1	0.4657	1	0.4657
1.5	0.8320			4	3.3280
2	1.1261	4	4.5044	2	2.2522
2.5	1.0984			4	4.3936
3	0.8238	1	0.8238	1	0.8238
			5.7939		11.2633

Hence $\quad I_{2}=5.7939 / 3 \quad=1.9313$
and $\quad I_{4}=11.2633 \times 0.5 / 3=1.8772$
(b) Maximum truncation error $\approx 2 \times 0.324 / 180=0.0036$

Hence suitable estimate is $I_{4}=1.88$
(c) With n strips and step size $2 h$, the Taylor series for expansion of an integral approximated by Simpson's rule (with principal truncation error of $\mathrm{O}\left(h^{2}\right)$) is

$$
\begin{equation*}
I=I_{n}+C(2 h)^{4}+D(2 h)^{6}+\ldots=I_{n}+16 C h^{4} \tag{1}
\end{equation*}
$$

With $2 n$ strips and step size h, we have

$$
\begin{equation*}
I=I_{2 n}+C h^{4}+D h^{6}+\ldots \tag{2}
\end{equation*}
$$

$16 \times(2)-(1)$ gives $15 I=16 I_{2 n}-I_{n}+\mathrm{O}\left(h^{6}\right)$
i.e. $I \approx\left(16 I_{2 n}-I_{n}\right) / 15=I_{2 n}+\left(I_{2 n}-I_{n}\right) / 15$
$I_{3}=1.8772+(1.8772-1.9313) / 15=1.8736$ or 1.874 to suitable accuracy

SECTION E (Mechanics 1)

E1. (a) From the equation of motion for the vertical motion

$$
\dot{y}=V \sin 45^{\circ}-g t=\frac{1}{\sqrt{2}} V-g t .
$$

The shell attains its maximum height when

$$
\dot{y}=0 \Rightarrow V=\sqrt{ } 2 g t=69.3 \mathrm{~m} \mathrm{~s}^{-1} .
$$

(b) The shell hits the ground again after 10 seconds. From the equation of motion for horizontal motion

$$
x=V \cos 45^{\circ} t=\frac{1}{\sqrt{ } 2} V t
$$

The range is

$$
R=\frac{1}{\sqrt{2}} V t \approx 490 \mathrm{~m}
$$

E2. (a) The position of the car is

$$
\begin{equation*}
x_{C}=\frac{1}{2} a t^{2}, \tag{1}
\end{equation*}
$$

and the position of the lorry

$$
\begin{equation*}
x_{L}=U t+\frac{1}{4} a t^{2} . \tag{1}
\end{equation*}
$$

When the car and the lorry draw level

$$
\begin{gathered}
x_{C}=x_{L} \\
\Leftrightarrow t\left(\frac{1}{4} a t-U\right)=0 \\
\Leftrightarrow t=0 \text { or } t=\frac{4 U}{a}
\end{gathered}
$$

and as $t>0$ we take $t=\frac{4 U}{a}$.
(b) When the car draws level with the lorry it has travelled

$$
\begin{equation*}
x_{C}=\frac{1}{2} a\left(\frac{4 U}{a}\right)^{2}=\frac{8 U^{2}}{a} . \tag{1}
\end{equation*}
$$

E3. (a) Resolving perpendicular to the plane

$$
\begin{gathered}
N+P \sin 30^{\circ}=m g \cos 30^{\circ} \\
\Rightarrow N=\sqrt{ } 3 g-\frac{1}{2} P \\
=\frac{1}{2}(2 \sqrt{ } 3 g-P)
\end{gathered}
$$

The frictional force is

$$
\begin{equation*}
F=\mu N=\frac{1}{4}(2 \sqrt{ } 3 g-P) . \tag{1}
\end{equation*}
$$

(b) Resolving parallel to the plane and using Newton II

$$
\begin{gathered}
P \cos 30^{\circ}=m g \sin 30^{\circ}+F \\
\Leftrightarrow \frac{\sqrt{ } 3}{2} P=g+\frac{1}{4}(2 \sqrt{ } 3 g-P) \\
\Leftrightarrow \\
\frac{1}{2}\left(\sqrt{ } 3+\frac{1}{2}\right) P=\left(1+\frac{1}{2} \sqrt{ } 3\right) g \\
\Leftrightarrow
\end{gathered} P=\frac{2(2+\sqrt{ } 3) g}{(2 \sqrt{ } 3+1)} \approx 16 \cdot 4 \mathrm{~N} .
$$

E4. (a) Resolving forces horizontally gives

$$
\begin{aligned}
T_{1} \cos 30^{\circ} & =T_{2} \cos 60^{\circ} \\
\Rightarrow \frac{\sqrt{ } 3}{2} T_{1} & =\frac{1}{2} T_{2} \\
\Rightarrow T_{2} & =\sqrt{ } 3 T_{1}>T_{1}
\end{aligned}
$$

1
(b) Resolving forces vertically and using Newton II

$$
\begin{gathered}
m a=T_{1} \sin 30^{\circ}+T_{2} \sin 60^{\circ}-m g \\
\Rightarrow \frac{1}{2} T_{1}+\frac{\sqrt{ } 3}{2} T_{2}=m(a+g) \\
\frac{1}{2} \frac{1}{\sqrt{3}} T_{2}+\frac{\sqrt{ } 3}{2} T_{2}=m(a+g) \\
\frac{1}{2}\left(\frac{1}{\sqrt{ } 3}+\sqrt{ } 3\right) T_{2}=m(a+g) \\
\Rightarrow T_{2}=\frac{\sqrt{ } 3}{2} m(a+g)
\end{gathered}
$$

E5. (a) Since $\mathbf{a}_{A}=-\frac{2}{5} t \mathbf{i}, \mathbf{v}_{A}(t)=-\frac{1}{5} t^{2} \mathbf{i}+\mathbf{c}$.
Since $\mathbf{v}_{A}(0)=10 \mathbf{i}$, we have $\mathbf{c}=10 \mathbf{i}$ so

$$
\begin{equation*}
\mathbf{v}_{A}(t)=\left(10-\frac{1}{5} t^{2}\right) \mathbf{i} \tag{1}
\end{equation*}
$$

Integrating again gives

$$
\mathbf{r}_{A}(t)=\left(10 t-\frac{1}{15} t^{3}\right) \mathbf{i}+\mathbf{c}_{2}
$$

but since $\mathbf{r}(0)=\mathbf{0}$ then $\mathbf{c}_{2}=\mathbf{0}$ and

$$
\begin{equation*}
\mathbf{r}_{A}(t)=\frac{t}{15}\left(150-t^{2}\right) \mathbf{i} \tag{1}
\end{equation*}
$$

(b)(i)

$$
\begin{array}{rlr}
\dot{\mathbf{r}}_{B} & =\frac{1}{15}\left\{75-3 t^{2}\right\} \mathbf{i}=\mathbf{0} \text { when } \\
3 t^{2} & =75 . \\
t & =5 \\
\text { When } t=5 \quad \mathbf{r}_{B} & =\frac{1}{15}\{45+375-125\} \mathbf{i}+4 \mathbf{j} \\
& =\frac{59}{3} \mathbf{i}+4 \mathbf{j} . \\
\text { So the distance from the origin } & =\sqrt{\left(\frac{59}{3}\right)^{2}+4^{2}} \approx 20.1 \mathrm{~m}
\end{array}
$$

(ii)

$$
\begin{aligned}
\mathbf{r}_{A}-\mathbf{r}_{B} & =\frac{1}{15} t\left(150-t^{2}\right) \mathbf{i}-\frac{1}{15}\left(45+75 t-t^{3}\right) \mathbf{j}-4 \mathbf{j} \\
& =\frac{1}{15}(75 t-45) \mathbf{i}-4 \mathbf{j}=(5 t-3) \mathbf{i}-4 \mathbf{j} \\
\left|\mathbf{r}_{A}-\mathbf{r}_{B}\right|^{2} & =(5 t-3)^{2}+16
\end{aligned}
$$

To find the minimum value

$$
\frac{d}{d t}\left(\left|\mathbf{r}_{A}-\mathbf{r}_{B}\right|^{2}\right)=2(5 t-3) \times 5=0
$$

so the minimum occurs when $t=\frac{3}{5}$.

