Differentiation

Chain Rule Revision

It is crucial to not forget about chain rule! While we will learn other rules for differentiation, chain rule is still a huge part of what will be done & you need to recognise it. The following questions will serve as reminders:

Questions

Differentiate

(a) $y = (5x+1)^3$ (b) $y = \cos(4x+1)$ (c) $y = (x^2+3x+1)^4$ (d) $y = \frac{3}{(1-4x)^2}$ (e) $y = \sin^3 x$ (f) $y = \cos(\cos x)$

We may also see some more difficult applications of chain rule.

Examples

(1) Differentiate
$$y = \cos^3 3x$$

 $y = \cos^3 3x$
 $dy = 3(\cos 3x)^2 \times \frac{d}{dx}(\cos 3x)$
 $= 3\cos^2 3x \times (-3\sin 3x)$
 $= -9\cos^2 3x \sin 3x$
(2) Differentiate $f(x) = (x + \sin 3x)^2$
 $f(x) = (x + \sin 3x)^2$
 $f'(x) = 2(x + \sin 3x) \times \frac{d}{dx}(x + \sin 3x)$
 $= 2(x + \sin 3x)(1 + \cos 3x)$

(3) If
$$y = \cos^{3}(2x+4)$$
, find $\frac{dy}{dx}$.
 $y = \cos^{3}(2x+4)$
(4) If $f(x) = \frac{1}{\sin^{2}(3x+1)}$, find $f'(x)$.
 $y = \cos^{3}(2x+4)$
 $f(x) = (\sin(3x+1))^{-2}$
 $\frac{dy}{dx} = 3(\cos(2x+4))^{2} \times \frac{d}{dx}(\cos(2x+4))$
 $= 3(\cos(2x+4))^{2} \times (-2\sin(2x+4))$
 $= -6\cos^{2}(2x+4)\sin(2x+4))$
 $f'(x) = -2(\sin(3x+1))^{-3} \times \frac{d}{dx}(\sin(3x+1))$
 $= -2\sin^{-3}(3x+1) \times (3\cos(3x+1))$
 $= \frac{-6\cos(3x+1)}{\sin^{3}(3x+1)}$

Product Rule

If we have two functions f(x) and g(x) which are both differentiable then if we have h(x) = f(x)g(x) we can differentiate this using the product rule.

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

In Leibniz notation we have

$$y = u(x)v(x)$$

$$\frac{dy}{dx} = u'v + uv'$$

<u>Examples</u>

Differentiate

(1)
$$y = x^2 \cos x$$

 $u = x^2$
 $u' = 2x$
 $u' = -\sin x$
 $u' = 2x \cos x + x^2(-\sin x)$
 $= 2x \cos x - x^2 \sin x$

(2)
$$y = 4x^{2}(3+x)^{5}$$

 $u = 4x^{2}$
 $u' = 8x$
 $v' = 5(3+x)^{4}$
 $= 8x(3+x)^{5} + 4x^{2}(5(3+x)^{4})$
 $= 8x(3+x)^{5} + 20x^{2}(3+x)^{4}$

(3)
$$y = (x+1)^2 (2x-3)^3$$

 $u = (x+1)^2$
 $v = (2x-3)^3$
 $u' = 2(x+1)$
 $u' = 3(2x-3)^2.2$
 $= 6(2x-3)^2$
 $dy = u'v + uv'$
 $= 2(x+1)(2x-3)^3 + 6(x+1)^2(2x-3)^2$

(4)
$$y = (x^2 + x)\sin 2x$$
 $u = x^2 + x$ $v = \sin 2x$ $\frac{dy}{dx} = u'v + uv'$
 $u' = 2x + 1$ $v' = 2\cos 2x$ $= (2x + 1)\sin 2x + (x^2 + x)2\cos 2x$
 $= (2x + 1)\sin 2x + 2(x^2 + x)\cos 2x$

(5)
$$y = \sin 3x \cos 2x$$

 $u = \sin 3x$
 $u' = 3\cos 3x$
 $v' = -2\sin 2x$
 $\frac{dy}{dx} = u'v + uv'$
 $= 3\cos 3x \cos 2x - 2\sin 3x \sin 2x$

(6)
$$y = x^{5}(x^{3} - 2x^{2})^{2}$$

 $u = x^{5}$
 $u' = 5x^{4}$
 $v = (x^{3} - 2x^{2})^{2}$
 $v' = 2(x^{3} - 2x^{2})(3x^{2} - 4x)$
 $\frac{dy}{dx} = u'v + uv'$
 $= 5x^{4}(2(x^{3} - 2x^{2})(3x^{2} - 4x)) + x^{5}(2(x^{3} - 2x^{2})(3x^{2} - 4x))$
 $= x^{6}(x - 2)(11x - 18)$

Quotient Rule

Similarly, if f(x) and g(x) are both differentiable then if we have $h(x) = \frac{f(x)}{g(x)}$ we can differentiate this using the quotient rule.

$$h(x) = \frac{f(x)}{g(x)}$$

$$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Or, in Leibniz notation

$$y = \frac{u(x)}{v(x)}$$
$$\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$$

Examples

Differentiate ...2

(1)
$$y = \frac{x^2}{x+1}$$
 $u = x^2$ $v = x+1$ $\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$
 $u' = 2x$ $v' = 1$ $= \frac{2x(x+1) - x^2(1)}{(x+1)^2}$
 $= \frac{x(x+2)}{(x+1)^2}$

(2)
$$y = \frac{\sin x}{3x}$$
 $u = \sin x$ $v = 3x$
 $u' = \cos x$ $v' = 3$
 $u' = \frac{\cos x(3x) - \sin x(3)}{(3x)^2}$
 $= \frac{3x \cos x - 3 \sin x}{9x^2}$

 $=\frac{x\cos x - \sin x}{3x^2}$

(3)
$$y = \frac{3x-1}{x^2 - x + 1}$$
 $u = 3x - 1$ $v = x^2 - x + 1$
 $u' = 3$ $v' = 2x - 1$

$$\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$$
$$= \frac{3(x^2 - x + 1) - (3x - 1)(2x - 1)}{(x^2 - x + 1)^2}$$
$$= \frac{-3x^2 + 2x + 2}{(x^2 - x + 1)^2}$$

$$\begin{aligned}
 (4) \quad y = \frac{2x^2}{\cos^2 x} & u = 2x^2 & v = \cos^2 x & \frac{dy}{dx} = \frac{u'v - uv'}{v^2} \\
 u' = 4x & v' = 2\cos x(-\sin x) & = \frac{4x\cos^2 x - 2x^2(-\sin 2x)}{(\cos^2 x)^2} \\
 = -\sin 2x & = \frac{4x\cos^2 x + 2x^2\sin 2x}{\cos^4 x} \end{aligned}$$

(5)
$$y = \frac{2x+1}{\sqrt{2x+1}}$$
 $u = 2x+1$ $v = (2x+1)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$
 $u' = 2$ $v' = \frac{1}{2}(2x+1)^{\frac{-1}{2}} \cdot 2$ $= \frac{2(2x+1)^{\frac{1}{2}} - (2x+1)(2x+1)^{\frac{-1}{2}}}{\left((2x+1)^{\frac{1}{2}}\right)^2}$
 $= \frac{2(2x+1)^{\frac{1}{2}} - (2x+1)^{\frac{1}{2}}}{(2x+1)}$
 $= \frac{2(2x+1)^{\frac{1}{2}} - (2x+1)^{\frac{1}{2}}}{(2x+1)}$

Product Rule or Quotient Rule?

Some questions can be tackled by either rule, depending on how they are presented & your own preference. These questions can be tackled by either method - although one may prove more straightforward than the other.

Questions

(a)
$$y = \frac{1}{2x} \sin x$$
 (b) $y = \frac{(x^5 + 2)^2}{3x}$ (c) $y = \frac{3x^2}{\sin^2 x}$

Question c) by the product rule would be simpler has we been aware of three other functions which exist in mathematics.

Secant, Cosecant & Cotangent

These three functions are defined as follows;

Secant:
$$\sec x = \frac{1}{\cos x}$$
 Cosecant: $\cos ecx = \frac{1}{\sin x}$ Cotangent: $\cot x = \frac{1}{\tan x}$

Remembering these three functions along with their derivatives can prove useful and make calculations quicker.

They will also allow us to add tan *x* to our list of trigonometric functions which we can differentiate.

$$y = \sec x \qquad u = 1 \qquad v = \cos x \qquad \frac{d}{dx} (\sec x) = \frac{u'v - uv'}{v^2}$$

$$= \frac{1}{\cos x} \qquad u' = 0 \qquad v' = -\sin x \qquad = \frac{0 - (-\sin x)}{(\cos x)^2}$$

$$= \frac{\sin x}{\cos x \cos x}$$

$$= \sec x \tan x$$

$$y = \cos ecx \qquad u = 1 \qquad v = \sin x \qquad \frac{d}{dx} (\cos ecx) = \frac{u'v - uv'}{v^2}$$

$$= \frac{1}{\sin x} \qquad u' = 0 \qquad v' = \cos x \qquad = \frac{0 - \cos x}{(\sin x)^2}$$

$$= \frac{-\cos x}{(\sin x)^2}$$

$$= \frac{-\cos x}{\sin x \sin x}$$

$$= -\cos ecx \cot x$$

$$y = \cot x \qquad u = \cos x \qquad v = \sin x \qquad \frac{d}{dx} (\cot x) = \frac{u'v - uv'}{v^2}$$

$$= \frac{1}{\tan x} \qquad u' = -\sin x \qquad v' = \cos x \qquad = \frac{-\sin x(\sin x) - \cos x(\cos x)}{(\sin x)^2}$$

$$= \frac{1}{\sin x} \qquad u' = -\sin x \qquad v' = \cos x \qquad = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$$

$$= \frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$$

$$= \frac{-\cos ec^2 x}{\sin^2 x}$$

If you forget these they can be derived by quotient rule as shown.

These definitions & our knowledge of the quotient rule now allow us to calculate the derivative of tan x.

$$\frac{d}{dx}(\tan x) = \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right) \qquad u = \sin x \qquad v = \cos x$$
$$= \frac{u'v - uv'}{v^2} \qquad u' = \cos x \qquad v' = -\sin x$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1}{\cos^2 x}$$
$$= \sec^2 x$$

These are important results to remember

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$
$$\frac{d}{dx}(\cos ecx) = -\cos ecx \cot x \qquad \qquad \frac{d}{dx}(\cot x) = -\cos ec^2 x$$

Derivatives of Exponentials and Logarithms

Two definitions

$$\frac{d}{dx}(e^x) = e^x \qquad \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

Again, we must remember about chain rule and ensure we apply it correctly. We can also use product and quotient rule with all of these new derivatives.

Examples

(1)
$$y = e^{4x}$$

 $\frac{dy}{dx} = e^{4x} \times \frac{d}{dx}(4x)$
 $= 4e^{4x}$
(2) $y = \ln 6x$
 $\frac{dy}{dx} = \frac{1}{6x} \times \frac{d}{dx}(6x)$
 $= \frac{1}{x}$
(3) $y = \sec(3x+1)$
 $\frac{dy}{dx} = \sec(3x+1)\tan(3x+1) \times \frac{d}{dx}(3x+1)$
 $= 3\sec(3x+1)\tan(3x+1)$
(4) $y = e^{\cos x}$
 $\frac{dy}{dx} = e^{\cos x} \times \frac{d}{dx}(\cos x)$
 $= -\sin xe^{\cos x}$
 $= -\sin xe^{\cos x}$
(5) $y = \ln(\tan x)$
 $\frac{dy}{dx} = \frac{1}{\tan x} \times \frac{d}{dx}(\tan x)$
 $= \frac{\sec^2 x}{\tan x}$
 $= \sec x \cos ecx$
(6) $y = \sin(\sec x)$
 $\frac{dy}{dx} = \cos(\sec x) \times \frac{d}{dx}(\sec x)$
 $= \sec x \tan x \cos(\sec x)$

(7)
$$y = xe^{-2x}$$
 $u = x$ $v = e^{-2x}$
 $\frac{dy}{dx} = e^{-2x} - 2xe^{-2x}$ $u' = 1$ $v' = -2e^{-2x}$
 $= (1-2x)e^{-2x}$

(8)
$$y = \tan x \ln(3x+1)$$

 $\frac{dy}{dx} = \sec^2 x \ln(3x+1) + \frac{3\tan x}{3x+1}$
 $u = \tan x$
 $u = \tan x$
 $v = \ln(3x+1)$
 $v' = \frac{3}{3x+1}$

(9)
$$y = \frac{\cos ecx}{e^{3x}}$$
 $u = \cos ecx$ $v = e^{3x}$
 $\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$ $u' = -\cos ecx \cot x$ $v' = 3e^{3x}$

$$= \frac{-\cot x \cos ecxe^{3x} - \cos ecx(3e^{3x})}{(e^{3x})^2}$$
$$= \frac{-\cot x \cos ecx - 3\cos ecx}{e^{3x}}$$
$$= \frac{-\cos ecx(\cot x + 3)}{e^{3x}}$$

$$\begin{array}{ll} \textcircled{1} & y = \frac{\ln(2x\cos x)}{\tan x} & u = \ln 2x + \ln \cos x & v = \tan x \\ y = \frac{\ln 2x + \ln \cos x}{\tan x} & u' = \frac{1}{x} - \frac{\sin x}{\cos x} & v' = \sec^2 x \\ \frac{dy}{dx} = \frac{u'v - uv'}{v^2} & u' = \frac{1}{x} - \tan x \\ = \frac{\left(\frac{1}{x} - \tan x\right)\tan x - \ln(2x\cos x)\sec^2 x}{\tan^2 x} \\ = \frac{\left(\frac{\tan x}{x} - \frac{\tan^2 x}{x}\right) - \frac{x\ln(2x\cos x)\sec^2 x}{x}}{\tan^2 x} \\ = \frac{\tan x - \tan^2 x - x\sec^2 x\ln(2x\cos x)}{x\tan^2 x} \end{array}$$

(1)
$$y = \frac{\tan x}{\sqrt{x}}$$

 $u = \tan x$
 $v = x^{\frac{1}{2}}$
 $\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$
 $u' = \sec^2 x$
 $v' = \frac{1}{2\sqrt{x}}$
 $= \frac{\sec^2 x(\sqrt{x}) - \frac{\tan x}{2\sqrt{x}}}{(\sqrt{x})^2}$
 $= \frac{x \sec^2 x - \tan x}{x^{\frac{3}{2}}}$

Higher Derivatives

In mathematics we can sometimes be required or find it more useful in taking more than one derivative of a function. This will aid us in many areas this year, including curve sketching, Maclaurin series and differential equations. It is probably best shown by example.

1

Examples

(1) $f(x) = x^5$	(2) $y = \sin 2x$
$f'(x) = 5x^4$	$\frac{dy}{dx} = 2\cos 2x$
$f''(x) = 20x^3$	$\frac{d^2 y}{dx^2} = -4\sin 2x$
$f''(x) = 60x^2$	$\frac{d^3y}{dx^3} = -8\cos 2x$
$f^{N}(x) = 120x$	$\frac{d^4 y}{dx^4} = 16\sin 2x$
$f^{V}(x) = 120$	etc
$f^{VI}(x) = 0$	

And each subsequent derivative = 0

③ Find the first to fourth derivatives of the function $f(x) = \sqrt{x}$

$$f(x) = x^{\frac{1}{2}} \qquad f'(x) = \frac{1}{2}x^{-\frac{1}{2}} \qquad f''(x) = \frac{-1}{4}x^{-\frac{3}{2}}$$
$$= \frac{1}{2\sqrt{x}} \qquad = \frac{-1}{4\sqrt{x^3}}$$

$$f''(x) = \frac{3}{8}x^{\frac{-3}{2}} \qquad f''(x) = \frac{-15}{16}x^{\frac{-7}{2}} = \frac{3}{8\sqrt{x^5}} \qquad = \frac{-15}{16\sqrt{x^7}}$$

(4) Calculate $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ & $\frac{d^3y}{dx^3}$ if $y = \ln(1+x^2)$.

 $y = \ln(1+x^2) \qquad \qquad \frac{dy}{dx} = \frac{1}{1+x^2} \times \frac{d}{dx}(1+x^2)$ $= \frac{2x}{1+x^2}$

Now we need to use quotient rule to go further.

$$\frac{d^2 y}{dx^2} = \frac{u'v - uv'}{v^2} \qquad u = 2x \qquad v = 1 + x^2$$
$$= \frac{2(1 + x^2) - 2x(2x)}{(1 + x^2)^2} \qquad u' = 2 \qquad v' = 2x$$
$$= \frac{2 - 2x^2}{(1 + x^2)^2}$$

$$\frac{d^{3}y}{dx^{3}} = \frac{u'v - uv'}{v^{2}} \qquad u = 2 - 2x^{2} \qquad v = (1 + x^{2})^{2}$$

$$= \frac{-4x(1 + x^{2})^{2} - 2(1 - x^{2})4x(1 + x^{2})}{((1 + x^{2})^{2})^{2}} \qquad u' = -4x \qquad v' = 4x(1 + x^{2})$$

$$= \frac{-4x - 4x^{3} - 8x + 8x^{3}}{(1 + x^{2})^{3}}$$

$$= \frac{-12x + 4x^{3}}{(1 + x^{2})^{3}}$$

$$= \frac{4x(x^{2} - 3)}{(1 + x^{2})^{3}}$$

(5) Calculate
$$\frac{dy}{dx} \ll \frac{d'y}{dx^2}$$
 if $y = e^{\cos x}$.
 $y = e^{\cos x}$ $\frac{dy}{dx} = -\sin x e^{\cos x}$ $\frac{d^2 y}{dx^2} = u'v + uv'$ $u = -\sin x$ $v = e^{\cos x}$
 $= -\cos x e^{\cos x} + \sin^2 x e^{\cos x}$ $u' = -\cos x$ $v' = -\sin x e^{\cos x}$

Rectinlinear Motion (Motion in a straight line)

This considers a body moving in a straight line (along an x axis which we set).

Its displacement from the origin if denoted either by x or s as a function of $t \{x(t); s(t)\}$

Velocity is the rate of change of displacement with time, thus $v = \frac{dx}{dt}$; v(t) = x'(t).

Acceleration (which is not necessarily constant), is the rate of change of velocity with respect to time.

i.e.
$$a = \frac{dv}{dt} = \frac{d^2v}{dt^2}$$
 $a(t) = v'(t) = x''(t)$. displacement velocity acceleration

differentiate w.r.t. time

Questions

(1) A particle travels along the x axis such that $x(t) = 2t^3 - 3t + 6$ where x represents its displacement in metres from the origin t seconds after observations began.

(a) Where is the particle initially?

(b) After 4 seconds what are the velocity and acceleration of the particle?

(2) Find the position and acceleration of a particle when it comes to rest if its displacement is given by $x = 10t - e^{t}$.

(3) Part of a journey an object made was observed. The displacement, x metres, of the object travelling in

a straight line at time t seconds is given as $x = \frac{t^3}{3} + t^2 - 8t + 10$

(a) How far from the origin was the object when its observation was started?

(b) At what time was the object stationary?

(c) Comment on the motion of the object after 5 seconds.

(d) Does the object ever reach a constant velocity or decelerate during the journey? Justify your answer.

Differentiation Sheet 3 contains more questions for practise.

Past Paper Questions

2001

Differentiate with respect to $x g(x) = e^{\cot 2x}$, $o < x < \frac{\pi}{2}$.	(2 marks)
--	-----------

2002

Given that $f(x) = \sqrt{x}e^{-x}$, $x \ge 0$, obtain and simplify f'(x). (4 marks)

2003

Given $f(x) = x(1+x)^{10}$, obtain f'(x) and simplify your answer. (3 marks)

2004

Given
$$f(x) = \cos^2 x e^{\tan x}, \frac{-\pi}{2} < x < \frac{\pi}{2}$$
, obtain $f'(x)$ and evaluate $f'\left(\frac{\pi}{4}\right)$. (3,1 marks)

<u>2005</u>

(a) Given
$$f(x) = x^3 \tan 2x$$
, where $0 < x < \frac{\pi}{4}$, obtain $f'(x)$. (3 marks)

(b) For
$$y = \frac{1+x^2}{1+x}$$
, where $x \neq -1$, determine $\frac{dy}{dx}$ in simplified form. (3 marks)

<u>2006</u>

Differentiate, simplifying your answer: $\frac{1+\ln x}{3x}$, where x > 0. (3 marks)

<u>2007</u>

Obtain the derivative of the function $f(x) = \exp(\sin 2x)$. (3 marks)

<u>2009</u>

Given $f(x) = (x+1)(x-2)^3$, obtain the values of x for which f'(x) = 0. (3 marks)

<u>2010</u>

Differentiate the following functions	
(a) $f(x) = e^x \sin x^2$.	(3 marks)
(b) $g(x) = \frac{x^3}{1 + \tan x}$.	(3 marks)

<u>2011</u>

Given $f(x) = \sin x \cos^3 x$, obtain f'(x). (3 marks)

<u>2012</u>

(a) Given
$$f(x) = \frac{3x+1}{x^2+1}$$
, obtain $f'(x)$. (3 marks)
(b) Let $g(x) = \cos^2 x \exp(\tan x)$. Obtain an expression for $g'(x)$ and simplify your answer. (4 marks)

<u>2013</u>

Differentiate $f(x) = e^{\cos x} \sin^2 x$. (3 marks)

<u>2014</u>

Given
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
, obtain $f'(x)$ and simplify your answer. (3 marks)

<u>2015</u>

(a) For
$$y = \frac{5x+1}{x^2+2}$$
, find $\frac{dy}{dx}$. Express your answer as a single, simplified fraction. (3 marks)

(b) Given
$$f(x) = e^{2x} \sin^2 3x$$
, obtain $f'(x)$. (3 marks)

<u>2016</u>

(a) Differentiate $y = x \tan^{-1} 2x$	(3 marks)
--	-----------

(b) Given
$$f(x) = \frac{1-x^2}{1+4x^2}$$
, find $f'(x)$, simplifying your answer. (3 marks)