Chain Rule Revision

It is crucial to not forget about chain rule! While we will learn other rules for differentiation, chain rule is still a huge part of what will be done \& you need to recognise it. The following questions will serve as reminders:

Questions

Differentiate
(a) $y=(5 x+1)^{3}$
(b) $y=\cos (4 x+1)$
(c) $y=\left(x^{2}+3 x+1\right)^{4}$
(d) $y=\frac{3}{(1-4 x)^{2}}$
(e) $y=\sin ^{3} x$
(f) $y=\cos (\cos x)$

We may also see some more difficult applications of chain rule.

Examples

(1) Differentiate $y=\cos ^{3} 3 x$
(2) Differentiate $f(x)=(x+\sin 3 x)^{2}$

$$
\begin{aligned}
y & =\cos ^{3} 3 x \\
\frac{d y}{d x} & =3(\cos 3 x)^{2} \times \frac{d}{d x}(\cos 3 x) \\
& =3 \cos ^{2} 3 x \times(-3 \sin 3 x) \\
& =-9 \cos ^{2} 3 x \sin 3 x
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =(x+\sin 3 x)^{2} \\
f^{\prime}(x) & =2(x+\sin 3 x) \times \frac{d}{d x}(x+\sin 3 x) \\
& =2(x+\sin 3 x)(1+\cos 3 x)
\end{aligned}
$$

$$
\begin{array}{lrl}
\text { (3) If } y=\cos ^{3}(2 x+4) \text {, find } \frac{d y}{d x} . & & \text { (4) If } f(x)=\frac{1}{\sin ^{2}(3 x+1)} \text {, find } f^{\prime}(x) . \\
\begin{aligned}
y & =\cos ^{3}(2 x+4) & f(x) & =(\sin (3 x+1))^{-2} \\
\frac{d y}{d x} & =3(\cos (2 x+4))^{2} \times \frac{d}{d x}(\cos (2 x+4)) & f^{\prime}(x) & =-2(\sin (3 x+1))^{-3} \times \frac{d}{d x}(\sin (3 x+1)) \\
& =3(\cos (2 x+4))^{2} \times(-2 \sin (2 x+4)) & & =-2 \sin ^{-3}(3 x+1) \times(3 \cos (3 x+1)) \\
& \left.=-6 \cos ^{2}(2 x+4) \sin (2 x+4)\right) & & =\frac{-6 \cos (3 x+1)}{\sin ^{3}(3 x+1)}
\end{aligned}
\end{array}
$$

Product Rule

If we have two functions $f(x)$ and $g(x)$ which are both differentiable then if we have $h(x)=f(x) g(x)$ we can differentiate this using the product rule.

$$
h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

In Leibniz notation we have

$$
y=u(x) v(x)
$$

$$
\frac{d y}{d x}=u^{\prime} v+u v^{\prime}
$$

Examples

Differentiate
(1) $y=x^{2} \cos x$

$$
\begin{array}{ll}
u=x^{2} & v=\cos x \\
u^{\prime}=2 x & v^{\prime}=-\sin x
\end{array}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =u^{\prime} v+u v^{\prime} \\
& =2 x \cos x+x^{2}(-\sin x) \\
& =2 x \cos x-x^{2} \sin x
\end{aligned}
$$

(2) $y=4 x^{2}(3+x)^{5}$

$$
\begin{array}{ll}
u=4 x^{2} & v=(3+x)^{5} \\
u^{\prime}=8 x & v^{\prime}=5(3+x)^{4}
\end{array}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =u^{\prime} v+u v^{\prime} \\
& =8 x(3+x)^{5}+4 x^{2}\left(5(3+x)^{4}\right) \\
& =8 x(3+x)^{5}+20 x^{2}(3+x)^{4}
\end{aligned}
$$

(3) $y=(x+1)^{2}(2 x-3)^{3}$

$$
\begin{array}{rl}
u=(x+1)^{2} & v \\
u^{\prime}=2(x+1) & =(2 x-3)^{3} \\
v^{\prime} & =3(2 x-3)^{2} \\
& =6(2 x-3)^{2}
\end{array}
$$

$$
\frac{d y}{d x}=u^{\prime} v+u v^{\prime}
$$

$$
=2(x+1)(2 x-3)^{3}+6(x+1)^{2}(2 x-3)^{2}
$$

(4) $y=\left(x^{2}+x\right) \sin 2 x \quad \begin{array}{ll}u=x^{2}+x & v=\sin 2 x \\ u^{\prime}=2 x+1 & v^{\prime}=2 \cos 2 x\end{array}$

$$
\begin{aligned}
\frac{d y}{d x} & =u^{\prime} v+u v^{\prime} \\
& =(2 x+1) \sin 2 x+\left(x^{2}+x\right) 2 \cos 2 x \\
& =(2 x+1) \sin 2 x+2\left(x^{2}+x\right) \cos 2 x
\end{aligned}
$$

(5) $y=\sin 3 x \cos 2 x \quad \begin{array}{ll}u=\sin 3 x & v=\cos 2 x \\ u^{\prime}=3 \cos 3 x & v^{\prime}=-2 \sin 2 x\end{array}$

$$
\begin{aligned}
\frac{d y}{d x} & =u^{\prime} v+u v^{\prime} \\
& =3 \cos 3 x \cos 2 x-2 \sin 3 x \sin 2 x
\end{aligned}
$$

(6) $y=x^{5}\left(x^{3}-2 x^{2}\right)^{2}$

$$
\begin{aligned}
& u=x^{5} \\
& u^{\prime}=5 x^{4}
\end{aligned}
$$

$$
v=\left(x^{3}-2 x^{2}\right)^{2}
$$

$$
v^{\prime}=2\left(x^{3}-2 x^{2}\right)\left(3 x^{2}-4 x\right)
$$

$$
\begin{aligned}
\frac{d y}{d x} & =u^{\prime} v+u v^{\prime} \\
& =5 x^{4}\left(2\left(x^{3}-2 x^{2}\right)\left(3 x^{2}-4 x\right)\right)+x^{5}\left(2\left(x^{3}-2 x^{2}\right)\left(3 x^{2}-4 x\right)\right) \\
& =x^{6}(x-2)(11 x-18)
\end{aligned}
$$

Quotient Rule

Similarly, if $f(x)$ and $g(x)$ are both differentiable then if we have $h(x)=\frac{f(x)}{g(x)}$ we can differentiate this using the quotient rule.

$$
\begin{aligned}
& h(x)=\frac{f(x)}{g(x)} \\
& h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
\end{aligned}
$$

Or, in Leibniz notation

$$
\begin{aligned}
& y=\frac{u(x)}{v(x)} \\
& \frac{d y}{d x}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
\end{aligned}
$$

Examples

Differentiate
(1) $y=\frac{x^{2}}{x+1}$

$$
u=x^{2} \quad v=x+1
$$

$$
\frac{d y}{d x}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
$$

$$
u^{\prime}=2 x \quad v^{\prime}=1
$$

$$
\begin{aligned}
& =\frac{2 x(x+1)-x^{2}(1)}{(x+1)^{2}} \\
& =\frac{x(x+2)}{(x+1)^{2}}
\end{aligned}
$$

(2) $y=\frac{\sin x}{3 x}$

$$
\begin{array}{rlrl}
u=\sin x & v=3 x & \frac{d y}{d x} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
u^{\prime}=\cos x & v^{\prime}=3 & & =\frac{\cos x(3 x)-\sin x(3)}{(3 x)^{2}} \\
& =\frac{3 x \cos x-3 \sin x}{9 x^{2}} \\
& & =\frac{x \cos x-\sin x}{3 x^{2}}
\end{array}
$$

(3) $y=\frac{3 x-1}{x^{2}-x+1}$

$$
\begin{array}{ll}
u=3 x-1 & v=x^{2}-x+1 \\
u^{\prime}=3 & v^{\prime}=2 x-1
\end{array}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
& =\frac{3\left(x^{2}-x+1\right)-(3 x-1)(2 x-1)}{\left(x^{2}-x+1\right)^{2}} \\
& =\frac{-3 x^{2}+2 x+2}{\left(x^{2}-x+1\right)^{2}}
\end{aligned}
$$

(4) $y=\frac{2 x^{2}}{\cos ^{2} x}$

$$
\begin{aligned}
& u=2 x^{2} \quad v=\cos ^{2} x \\
& \frac{d y}{d x}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
& u^{\prime}=4 x \quad v^{\prime}=2 \cos x(-\sin x) \\
& =-\sin 2 x \quad=\frac{4 x \cos ^{2} x+2 x^{2} \sin 2 x}{\cos ^{4} x}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& y=\frac{2 x+1}{\sqrt{2 x+1}} \quad \begin{array}{ll}
u=2 x+1 & v=(2 x+1)^{\frac{1}{2}} \\
u^{\prime}=2 & v^{\prime}=\frac{1}{2}(2 x+1)^{\frac{-1}{2}} \cdot 2 \\
& =\frac{2(2 x+1)^{\frac{1}{2}}-(2 x+1)(2 x+1)^{\frac{-1}{2}}}{v^{2}} \\
\left((2 x+1)^{\frac{1}{2}}\right)^{2}
\end{array} \\
&=\frac{2(2 x+1)^{\frac{1}{2}}-(2 x+1)^{\frac{1}{2}}}{(2 x+1)} \\
&=(2 x+1)^{\frac{-1}{2}}
\end{aligned}
$$

Product Rule or Quotient Rule?

Some questions can be tackled by either rule, depending on how they are presented \& your own preference. These questions can be tackled by either method - although one may prove more straightforward than the other.

Questions

(a) $y=\frac{1}{2 x} \sin x$
(b) $y=\frac{\left(x^{5}+2\right)^{2}}{3 x}$
(c) $y=\frac{3 x^{2}}{\sin ^{2} x}$

Question c) by the product rule would be simpler has we been aware of three other functions which exist in mathematics.

Secant, Cosecant \& Cotangent

These three functions are defined as follows;
Secant: $\quad \sec x=\frac{1}{\cos x}$
Cosecant: $\quad \operatorname{cosec} x=\frac{1}{\sin x}$ Cotangent: $\quad \cot x=\frac{1}{\tan x}$

Remembering these three functions along with their derivatives can prove useful and make calculations quicker.

They will also allow us to add $\tan x$ to our list of trigonometric functions which we can differentiate.

$$
\begin{aligned}
& y=\sec x \\
& u=1 \quad v=\cos x \\
& =\frac{1}{\cos x} \quad u^{\prime}=0 \quad v^{\prime}=-\sin x \\
& \frac{d}{d x}(\sec x)=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
& =\frac{0-(-\sin x)}{(\cos x)^{2}} \\
& =\frac{\sin x}{\cos x \cos x} \\
& =\sec x \tan x \\
& y=\operatorname{cosec} x \\
& u=1 \quad v=\sin x \\
& =\frac{1}{\sin x} \\
& u^{\prime}=0 \quad v^{\prime}=\cos x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rlrl}
y & =\cot x & u=\cos x & v=\sin x \\
& =\frac{1}{\tan x} & u^{\prime}=-\sin x & v^{\prime}=\cos x \\
& =\frac{1}{\frac{1}{\sin x}}(\cos x \\
& =\frac{\cos x}{\sin x} & & =\frac{-\sin x(\sin x)-u v^{\prime}}{v^{2}} \\
(\sin x)^{2} \\
& & =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
& & =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
& =\frac{-1}{\sin ^{2} x} \\
& & =-\cos ^{2} e c^{2} x
\end{array} \\
& \begin{array}{rlrl}
y & =\cot x & u=\cos x & v=\sin x \\
& =\frac{1}{\tan x} & u^{\prime}=-\sin x & v^{\prime}=\cos x \\
& =\frac{1}{\frac{1}{\sin x}}(\cos x \\
& =\frac{\cos x}{\sin x} & & =\frac{-\sin x(\sin x)-u v^{\prime}}{v^{2}} \\
(\sin x)^{2} \\
& & =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
& & =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
& =\frac{-1}{\sin ^{2} x} \\
& & =-\cos ^{2} e c^{2} x
\end{array} \\
& \begin{array}{rlrl}
y & =\cot x & u=\cos x & v=\sin x \\
& =\frac{1}{\tan x} & u^{\prime}=-\sin x & v^{\prime}=\cos x \\
& =\frac{1}{\frac{1}{\sin x}}(\cos x \\
& =\frac{\cos x}{\sin x} & & =\frac{-\sin x(\sin x)-u v^{\prime}}{v^{2}} \\
(\sin x)^{2} \\
& & =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
& & =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
& =\frac{-1}{\sin ^{2} x} \\
& & =-\cos ^{2} e c^{2} x
\end{array} \\
& \frac{d}{d x}(\operatorname{cosec} x)=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
& =\frac{0-\cos x}{(\sin x)^{2}} \\
& =\frac{-\cos x}{\sin x \sin x} \\
& =-\operatorname{cosec} x \cot x
\end{aligned}
$$

If you forget these they can be derived by quotient rule as shown.

These definitions \& our knowledge of the quotient rule now allow us to calculate the derivative of $\tan x$.

$$
\begin{array}{rlrl}
\frac{d}{d x}(\tan x) & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) & u=\sin x \quad v=\cos x \\
& =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} & u^{\prime}=\cos x \quad v^{\prime}=-\sin x \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} & & \\
& =\frac{1}{\cos ^{2} x} & & \\
& =\sec ^{2} x &
\end{array}
$$

These are important results to remember

$$
\begin{array}{ll}
\frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\sec x)=\sec x \tan x \\
\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x & \frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x
\end{array}
$$

Derivatives of Exponentials and Logarithms

Two definitions

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad \frac{d}{d x}(\ln x)=\frac{1}{x}
$$

Again, we must remember about chain rule and ensure we apply it correctly. We can also use product and quotient rule with all of these new derivatives.

Examples

(1) $y=e^{4 x}$
(2) $y=\ln 6 x$
(3) $y=\sec (3 x+1)$

$$
\begin{aligned}
\frac{d y}{d x} & =e^{4 x} \times \frac{d}{d x}(4 x) \\
& =4 e^{4 x}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{6 x} \times \frac{d}{d x}(6 x) \\
& =\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\sec (3 x+1) \tan (3 x+1) \times \frac{d}{d x}(3 x+1) \\
& =3 \sec (3 x+1) \tan (3 x+1)
\end{aligned}
$$

(4) $y=e^{\cos x}$
$\frac{d y}{d x}=e^{\cos x} \times \frac{d}{d x}(\cos x)$
(5) $y=\ln (\tan x)$
(6) $y=\sin (\sec x)$
$\frac{d y}{d x}=\frac{1}{\tan x} \times \frac{d}{d x}(\tan x)$
$\frac{d y}{d x}=\cos (\sec x) \times \frac{d}{d x}(\sec x)$
$=\frac{\sec ^{2} x}{\tan x}$
$=\sec x \tan x \cos (\sec x)$
$=\sec x \operatorname{cosec} x$
(7) $y=x e^{-2 x}$
$u=x$
$v=e^{-2 x}$
$\frac{d y}{d x}=e^{-2 x}-2 x e^{-2 x}$
$u^{\prime}=1$
$v^{\prime}=-2 e^{-2 x}$

$$
=(1-2 x) e^{-2 x}
$$

(8) $y=\tan x \ln (3 x+1)$

$$
\frac{d y}{d x}=\sec ^{2} x \ln (3 x+1)+\frac{3 \tan x}{3 x+1}
$$

$$
\begin{array}{ll}
u=\tan x & v=\ln (3 x+1) \\
u^{\prime}=\sec ^{2} x & v^{\prime}=\frac{3}{3 x+1}
\end{array}
$$

$\begin{array}{lll}\text { (9) } \begin{array}{ll}y & =\frac{\operatorname{cosec} x}{e^{3 x}} \\ \frac{d y}{d x} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}}\end{array} & u=\operatorname{cosec} x & v=e^{3 x} \\ & u^{\prime}=-\operatorname{cosec} x \cot x & v^{\prime}=3 e^{3 x}\end{array}$

$$
\begin{aligned}
& =\frac{-\cot x \operatorname{cosec} x e^{3 x}-\operatorname{cosec} x\left(3 e^{3 x}\right)}{\left(e^{3 x}\right)^{2}} \\
& =\frac{-\cot x \operatorname{cosec} x-3 \operatorname{cosec} x}{e^{3 x}} \\
& =\frac{-\operatorname{cosec} x(\cot x+3)}{e^{3 x}}
\end{aligned}
$$

(10) $y=\frac{\ln (2 x \cos x)}{\tan x} \quad u=\ln 2 x+\ln \cos x \quad v=\tan x$

$$
\begin{array}{rlr}
y=\frac{\ln 2 x+\ln \cos x}{\tan x} & u^{\prime}=\frac{1}{x}-\frac{\sin x}{\cos x} \\
\frac{d y}{d x}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} & u^{\prime}=\frac{1}{x}-\tan x
\end{array} \quad v^{\prime}=\sec ^{2} x
$$

$$
=\frac{\left(\frac{1}{x}-\tan x\right) \tan x-\ln (2 x \cos x) \sec ^{2} x}{\tan ^{2} x}
$$

$$
=\frac{\left(\frac{\tan x}{x}-\frac{\tan ^{2} x}{x}\right)-\frac{x \ln (2 x \cos x) \sec ^{2} x}{x}}{\tan ^{2} x}
$$

$$
=\frac{\tan x-\tan ^{2} x-x \sec ^{2} x \ln (2 x \cos x)}{x \tan ^{2} x}
$$

$$
\begin{array}{lll}
\text { (11) } \begin{array}{ll}
y=\frac{\tan x}{\sqrt{x}} & u=\tan x
\end{array} & v=x^{\frac{1}{2}} \\
\frac{d y}{d x}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} & u^{\prime}=\sec ^{2} x & v^{\prime}=\frac{1}{2 \sqrt{x}} \\
=\frac{\sec ^{2} x(\sqrt{x})-\frac{\tan x}{2 \sqrt{x}}}{(\sqrt{x})^{2}} & \\
=\frac{x \sec ^{2} x-\tan x}{x^{\frac{3}{2}}} & &
\end{array}
$$

Higher Derivatives

In mathematics we can sometimes be required or find it more useful in taking more than one derivative of a function. This will aid us in many areas this year, including curve sketching, Maclaurin series and differential equations. It is probably best shown by example.

Examples

(1) $f(x)=x^{5}$
(2) $y=\sin 2 x$
$f^{\prime}(x)=5 x^{4}$ $\frac{d y}{d x}=2 \cos 2 x$
$f^{\prime \prime}(x)=20 x^{3}$
$\frac{d^{2} y}{d x^{2}}=-4 \sin 2 x$
$f^{\prime \prime \prime}(x)=60 x^{2}$
$\frac{d^{3} y}{d x^{3}}=-8 \cos 2 x$
$f^{I V}(x)=120 x$
$\frac{d^{4} y}{d x^{4}}=16 \sin 2 x$
$f^{V}(x)=120$
etc.
$f^{V I}(x)=0$

And each subsequent derivative $=0$
(3) Find the first to fourth derivatives of the function $f(x)=\sqrt{x}$

$$
\left.\begin{array}{rlrl}
f(x)=x^{\frac{1}{2}} & f^{\prime}(x) & =\frac{1}{2} x^{\frac{-1}{2}} & f^{\prime \prime}(x)
\end{array}\right)=\frac{-1}{4} x^{\frac{-3}{2}}
$$

(4) Calculate $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}} \& \frac{d^{3} y}{d x^{3}}$ if $y=\ln \left(1+x^{2}\right)$.

$$
\begin{aligned}
y=\ln \left(1+x^{2}\right) \quad \begin{aligned}
\frac{d y}{d x} & =\frac{1}{1+x^{2}} \times \frac{d}{d x}\left(1+x^{2}\right) \quad \text { Now we need to use quotient rule to go further. } \\
& =\frac{2 x}{1+x^{2}}
\end{aligned} .
\end{aligned}
$$

$$
\begin{array}{rlr}
\frac{d^{2} y}{d x^{2}} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} & u=2 x
\end{array} \quad v=1+x^{2}
$$

$$
\begin{array}{rlrl}
\frac{d^{3} y}{d x^{3}} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} & u=2-2 x^{2} & v=\left(1+x^{2}\right)^{2} \\
& =\frac{-4 x\left(1+x^{2}\right)^{2}-2\left(1-x^{2}\right) 4 x\left(1+x^{2}\right)}{\left(\left(1+x^{2}\right)^{2}\right)^{2}} & u^{\prime}=-4 x & v^{\prime}=4 x\left(1+x^{2}\right) \\
& =\frac{-4 x-4 x^{3}-8 x+8 x^{3}}{\left(1+x^{2}\right)^{3}} & \\
& =\frac{-12 x+4 x^{3}}{\left(1+x^{2}\right)^{3}} & \\
& =\frac{4 x\left(x^{2}-3\right)}{\left(1+x^{2}\right)^{3}} &
\end{array}
$$

(5) Calculate $\frac{d y}{d x} \& \frac{d^{2} y}{d x^{2}}$ if $y=e^{\cos x}$.

$$
\begin{array}{llll}
y=e^{\cos x} & \frac{d y}{d x}=-\sin x e^{\cos x} & \frac{d^{2} y}{d x^{2}} & =u^{\prime} v+u v^{\prime} \\
& =-\cos x e^{\cos x}+\sin ^{2} x e^{\cos x} & u^{\prime}=-\cos x & v^{\prime}=-\sin x e^{\cos x}
\end{array}
$$

Rectinlinear Motion (Motion in a straight line)

This considers a body moving in a straight line (along an x axis which we set).
Its displacement from the origin if denoted either by x or s as a function of $t\{x(t) ; s(t)\}$
Velocity is the rate of change of displacement with time, thus $v=\frac{d x}{d t} ; v(t)=x^{\prime}(t)$.

Acceleration (which is not necessarily constant), is the rate of change of velocity with respect to time.
i.e. $\quad a=\frac{d v}{d t}=\frac{d^{2} v}{d t^{2}} \quad a(t)=v^{\prime}(t)=x "(t)$.

differentiate w.r.t. time

Questions

(1) A particle travels along the x axis such that $x(t)=2 t^{3}-3 t+6$ where x represents its displacement in metres from the origin t seconds after observations began.
(a) Where is the particle initially?
(b) After 4 seconds what are the velocity and acceleration of the particle?
(2) Find the position and acceleration of a particle when it comes to rest if its displacement is given by $x=10 t-e^{t}$.
(3) Part of a journey an object made was observed. The displacement, x metres, of the object travelling in a straight line at time t seconds is given as $x=\frac{t^{3}}{3}+t^{2}-8 t+10$
(a) How far from the origin was the object when its observation was started?
(b) At what time was the object stationary?
(c) Comment on the motion of the object after 5 seconds.
(d) Does the object ever reach a constant velocity or decelerate during the journey? Justify your answer.

Differentiation Sheet 3 contains more questions for practise.

Past Paper Questions

2001

Differentiate with respect to $x \quad g(x)=e^{\cot 2 x}, o<x<\frac{\pi}{2}$.

$\underline{2002}$

Given that $f(x)=\sqrt{x} e^{-x}, x \geq 0$, obtain and simplify $f^{\prime}(x)$.

$\underline{2003}$

Given $f(x)=x(1+x)^{10}$, obtain $f^{\prime}(x)$ and simplify your answer.

$\underline{2004}$

Given $f(x)=\cos ^{2} x e^{\tan x}, \frac{-\pi}{2}<x<\frac{\pi}{2}$, obtain $f^{\prime}(x)$ and evaluate $f^{\prime}\left(\frac{\pi}{4}\right)$.
(a) Given $f(x)=x^{3} \tan 2 x$, where $0<x<\frac{\pi}{4}$, obtain $f^{\prime}(x)$.
(b) For $y=\frac{1+x^{2}}{1+x}$, where $x \neq-1$, determine $\frac{d y}{d x}$ in simplified form.

$\underline{2006}$

Differentiate, simplifying your answer: $\frac{1+\ln x}{3 x}$, where $x>0$.

2007

Obtain the derivative of the function $f(x)=\exp (\sin 2 x)$.

$\underline{2009}$

Given $f(x)=(x+1)(x-2)^{3}$, obtain the values of x for which $f^{\prime}(x)=0$.

2010

Differentiate the following functions
(a) $f(x)=e^{x} \sin x^{2}$.
(b) $g(x)=\frac{x^{3}}{1+\tan x}$.

2011

Given $f(x)=\sin x \cos ^{3} x$, obtain $f^{\prime}(x)$.

$\underline{2012}$

(a) Given $f(x)=\frac{3 x+1}{x^{2}+1}$, obtain $f^{\prime}(x)$.
(b) Let $g(x)=\cos ^{2} x \exp (\tan x)$. Obtain an expression for $g^{\prime}(x)$ and simplify your answer.

$\underline{2013}$

Differentiate $f(x)=e^{\cos x} \sin ^{2} x$.

$\underline{2014}$

Given $f(x)=\frac{x^{2}-1}{x^{2}+1}$, obtain $f^{\prime}(x)$ and simplify your answer.
(a) For $y=\frac{5 x+1}{x^{2}+2}$, find $\frac{d y}{d x}$. Express your answer as a single, simplified fraction.
(b) Given $f(x)=e^{2 x} \sin ^{2} 3 x$, obtain $f^{\prime}(x)$.

$\underline{2016}$

(a) Differentiate $y=x \tan ^{-1} 2 x$
(b) Given $f(x)=\frac{1-x^{2}}{1+4 x^{2}}$, find $f^{\prime}(x)$, simplifying your answer.

