Sequences and Series

A sequence takes the form $1,4,7,10,13, \ldots$ while $1+4+7+10+13+\ldots$ is a series.
There are two types of sequence/series - arithmetic and geometric.

Arithmetic

An arithmetic sequence is one where we establish the next number in the sequence by adding (or subtracting) a given number. This number is known as the common difference.

Generally:
Let a be the first term in the sequence and d be the common difference.
$u_{1}=a$
$u_{2}=a+d$
$u_{3}=u_{2}+d=a+2 d$
$u_{4}=u_{3}+d=a+3 d$
!
$u_{n}=a+(n-1) d$
This formula is important as it allows us to find the $n^{\text {th }}$ term in an arithmetic sequence provided we know the first term and the common difference.

If we sum the terms of this sequence we have an arithmetic series. The sum to n terms of this arithmetic series is given by the formula

$$
S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

Proof

Let

Rewriting this backwards

$$
\begin{aligned}
& S_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n-1}+u_{n} \\
& S_{n}=u_{n}+u_{n-1}+u_{n-2}+\ldots+u_{2}+u_{1}
\end{aligned}
$$

Adding these together

$$
2 S_{n}=\left(u_{1}+u_{n}\right)+\left(u_{2}+u_{n-1}\right)+\left(u_{3}+u_{n-2}\right)+\ldots+\left(u_{n-1}+u_{2}\right)+\left(u_{n}+u_{1}\right)
$$

$$
2 S_{n}=(a+a+(n-1) d)+(a+d+a+(n-2) d)+(a+2 d+a+(n-3) d)+\ldots
$$

$$
\ldots+(a+(n-2) d+a+d)+(a+(n-1) d+a)
$$

$$
2 S_{n}=(2 a+(n-1) d)+(2 a+(n-1) d)+(2 a+(n-1) d)+\ldots \ldots+(2 a+(n-1) d)
$$

$$
2 S_{n}=n(2 a+(n-1) d)
$$

$$
S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

Examples

(1) (a) Find the 20th term of the arithmetic sequence $4,11,18,25,32, \ldots$
(b) Find the sum of the first eight terms.
(a) $a=4, d=7 \quad u_{n}=a+(n-1) d$
(b) $S_{n}=\frac{n}{2}(2 a+(n-1) d)$
$u_{n}=4+7(n-1)$
$S_{8}=\frac{8}{2}(2 \times 4+7 \times 7)$
$u_{20}=4+7(20-1)$

$$
=4(8+49)
$$

$$
=137 \quad=228
$$

(2) (a) Find the $40 t h$ term of the arithmetic sequence $2, \frac{3}{2}, 1, \frac{1}{2}, \ldots$
(b) Find the sum of the first fifteen terms.
(a) $a=2, d=\frac{-1}{2} \quad u_{n}=a+(n-1) d$
(b) $S_{n}=\frac{n}{2}(2 a+(n-1) d)$

$$
\begin{aligned}
& u_{n}=2-\frac{1}{2}(n-1) \\
& u_{40}=2-\frac{1}{2}(40-1)
\end{aligned}
$$

$$
S_{15}=\frac{15}{2}\left(2 \times 2+(15-1)\left(\frac{-1}{2}\right)\right)
$$

$$
=\frac{15}{2}(4-7)
$$

$$
=\frac{-35}{2} \quad=\frac{-45}{2}
$$

(3) (a) Find the 75 th term of the arithmetic sequence $40,35,30,25, \ldots$
(b) Find the sum of the first 100 terms of the series.
(a) $a=40, d=-5$
$u_{n}=a+(n-1) d$
(b) $S_{n}=\frac{n}{2}(2 a+(n-1) d)$
$u_{n}=40-5(n-1)$
$S_{100}=\frac{100}{2}(80+99(-5))$
$u_{75}=40-5(75-1)$ $=-20750$
(4) (a) A sequence is given as follows: $2 x+1,3 x+4,4 x+7,5 x+10, \ldots$ State an expression for the common difference.
(b) Find an expression for the 12 th term.
(c) Find an expression for the first 25 terms of the series.
(a) Common difference $=x+3$
(b) $u_{n}=a+(n-1) d$

$$
\begin{aligned}
u_{12} & =(2 x+1)+11(x+3) \\
& =13 x+34
\end{aligned}
$$

(c) $S_{25}=\frac{25}{2}(2(2 x+1)+24(x+3))$

$$
\begin{aligned}
& =\frac{25}{2}(28 x+74) \\
& =350 x+925
\end{aligned}
$$

(5) If the 6 th term of an arithmetic sequence is -22 and the $3 r d$ is -10 , define the sequence and find the first four terms.

$$
\begin{aligned}
u_{6} & =a+5 d & u_{3} & =a+2 d \\
-22 & =a+5 d & -10 & =a+2 d
\end{aligned}
$$

Solve equations simultaneously to get $a=-2, d=-4$

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& u_{n}=-2-4(n-1) \\
& u_{1}=-2, u_{2}=-6, u_{3}=-10, u_{4}=-14
\end{aligned}
$$

(6) Find the value of n when $a=-3, d=2$ and the term of the sequence is 15 .

$$
\begin{aligned}
u_{n} & =a+(n-1) d \\
15 & =-3+2(n-1) \\
18 & =2(n-1) \\
n & =10
\end{aligned}
$$

(7) Which term in the arithmetic sequence $4,1,-2, \ldots$ is -14 ?

$$
\begin{aligned}
u_{n} & =a+(n-1) d \\
u_{n} & =4-3(n-1) \\
-14 & =4-3 n+3 \\
n & =7
\end{aligned}
$$

The 7 th term is -14 .
(8) If an arithmetic sequence has $u_{1}=1$ and $u_{2}=1 \cdot 5$, which term has the value 31 ?

$$
\begin{aligned}
u_{n} & =a+(n-1) d \\
31 & =1+\frac{1}{2}(n-1) \\
60 & =n-1 \\
n & =61
\end{aligned}
$$

The $61 s t$ term has the value 31 .
(9) An arithmetic sequence starts with 3 . The 100 th term is -393 . What is the common difference between the terms?

$$
\begin{gathered}
u_{n}=a+(n-1) d \\
u_{n}=3+(n-1) d \\
u_{100}=3+99 d \\
-393=3+99 d \\
99 d=-396 \\
d=-4
\end{gathered}
$$

The common difference is -4 .
(10) The sum of the first 4 terms of an arithmetic sequence is 26 . The sum of the first 12 terms is 222 . What is the sum of the first 20 terms?

$$
\begin{array}{rlrl}
S_{n}= & \frac{n}{2}(2 a+(n-1) d) & \\
S_{4}: 26 & =\frac{4}{2}(2 a+3 d) & S_{12}: 222 & =\frac{12}{2}(2 a+11 d) \\
26 & =4 a+6 d & 222 & =12 a+66 d
\end{array}
$$

Solve simultaneously to get $a=2, d=3$.

$$
\begin{aligned}
& S_{n}=\frac{n}{2}(4+3(n-1)) \\
& S_{20}=10(4+3 \times 19) \\
& S_{20}=610
\end{aligned}
$$

(11) The first two terms of an arithmetic sequence are 9 and 12 in that order.
(a) Find the sum of the first
(i) 18 terms
(ii) 19 terms
(b) Hence calculate the 19th term.
(a) $a=9, d=3 \quad S_{n}=\frac{n}{2}(2 a+(n-1) d)$

$$
\begin{gathered}
S_{n}=\frac{n}{2}(18+3(n-1)) \\
S_{18}=9(18+3 \times 17)=621 \quad S_{19}=\frac{19}{2}(18+3 \times 18)=684
\end{gathered}
$$

(b) 19th term $=684-621=63$
(12) The first two terms of an arithmetic sequence are 2 and 10. After what term does this series exceed 300 ?

$$
\begin{aligned}
a=2, d=8 & S_{n}
\end{aligned}=\frac{n}{2}(2 a+(n-1) d)
$$

$S_{n}>300$
$4 n^{2}-2 n>300$
$2 n^{2}-n-150>0$
When is $2 n^{2}-n-150=0$
$n=\frac{1 \pm \sqrt{1+8 \times 150}}{4}$
$n=8.9$ or $n=-8.4 \therefore$ Series exceeds 300 at the 9 th term.
(13) The sum of the first 50 terms of an arithmetic sequence is 2000 . The common difference is 2 . What is the first term?
$S_{50}=\frac{50}{2}(2 a+49 \times 2)$
$2800=25(2 a+98)$
$a=7 \quad$ The first term is 7.

Questions

(1) (a) Find the 25 th term of the sequence $2,6,10,14, \ldots$
(b) Find the sum of the first 12 terms.
(2) The $3^{\text {rd }}$ term of an arithmetic sequence is 40 and the $5^{\text {th }}$ term is 30 .
(a) Find the first term and common difference.
(b) Find the $20^{\text {th }}$ term of the sequence.
(3) The $4^{\text {th }}$ term of an arithmetic sequence is 22 and the $7^{\text {th }}$ term is 37 .
(a) Find a formula for the nth term of the sequence.
(b) What is the sum of the first 50 terms?
(4) If an arithmetic sequence has $u_{1}=8$ and $u_{2}=5$, which term in the sequence has the value -49 ?
(5) The $1^{\text {st }}$ term in an arithmetic sequence is 6 . The $40^{\text {th }}$ term is 435 . What is the common difference between the terms?
(6) In the arithmetic sequence beginning $2,8,14,20, \ldots$, which term is the first to exceed 100 ?
(7) The $1^{\text {st }}$ term of an arithmetic sequence is 3 and the $6^{\text {th }}$ term is twice the $3^{\text {rd }}$ term. Find the common difference and the $12^{\text {th }}$ term.
(8) For the arithmetic series $5+7+9+11+\ldots$
(a) Find a formula for S_{n}, the sum of the first n terms.
(b) Hence, find how many terms must be taken to give a sum of 192 .
(9) (a) Find a formula for S_{n}, the sum of the first n terms of the arithmetic series

$$
3+8+13+18+\ldots
$$

(b) Hence find the least number of terms that are required to make a sum exceeding 2000.
(10) In an arithmetic sequence, the $8^{\text {th }}$ term is twice the $4^{\text {th }}$ term.
(a) If a is the first term and d is the common difference, show that $a=d$.
(b) Given that the 20th term is 40 , find the sum of the first 50 terms of this sequence.

Geometric

A geometric sequence is one where we establish the next number in the sequence by multiplying or dividing by a given number. This number is called the common ratio. It is the ratio between two consecutive terms.

Generally :
Let a be the first term of the sequence and r be the common ratio.

$$
\begin{aligned}
& u_{1}=a \\
& u_{2}=a r \\
& u_{3}=a r^{2} \\
& \vdots \\
& \hline u_{n}=a r^{n-1}
\end{aligned}
$$

Again, this result should be remembered. It allows us to find the $n^{\text {th }}$ term in a geometric sequence provided we know the first term and the common ratio.
If we sum the terms of this sequence we have a geometric series. The sum to n terms of this geometric series is given by the formula

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}, \quad r \neq 1
$$

Proof

$$
S_{n}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-2}+a r^{n-1}
$$

If we multiply both sides by r we get $\ldots \quad r S_{n}=a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}+a r^{n}$
Subtracting $\ldots \quad S_{n}-r S_{n}=a-a r^{n}$

$$
\begin{aligned}
(1-r) S_{n} & =a\left(1-r^{n}\right) \\
S_{n} & =\frac{a\left(1-r^{n}\right)}{(1-r)}, r \neq 1
\end{aligned}
$$

(When $r=1$, the series is $a+a+a+a+\ldots$ so $S_{n}=n a$)

Examples

(1) Find the nth term and the 10 th term of the geometric sequence $3,12,48, \ldots$

$$
a=3, \quad r=\frac{12}{3}=4, \quad \begin{aligned}
u_{n} & =a r^{n-1} \\
u_{n} & =3 \times 4^{n-1} \\
u_{10} & =3 \times 4^{10-1} \\
& =3 \times 4^{9} \\
& =786432
\end{aligned}
$$

(2) Find the geometric sequence whose $3 r d$ term is 18 and whose 8 th term is 4374 .

$$
\begin{array}{rlrl}
u_{3} & =18 & u_{8} & =4374 \\
18 & =a r^{2} & 4374 & =a r^{7}
\end{array}
$$

$$
\begin{aligned}
\frac{a r^{7}}{a r^{2}} & =\frac{4374}{18} \\
r^{5} & =243 \\
r & =3
\end{aligned}
$$

$$
\begin{aligned}
& 18=a \times 3^{2} \\
& \quad a=2 \\
& \text { So } u_{n}=2 \times 3^{n-1} \\
& \quad u_{1}=2, u_{2}=6, u_{3}=18, u_{4}=54, \ldots
\end{aligned}
$$

So sequence is $2,6,18,54, \ldots$
(3) Given the geometric sequence $5,10,20,40, \ldots$ find the value of n for which $u_{n}=20480$.

$$
\begin{aligned}
& a=5, r=\frac{10}{5}=2, \quad u_{n}=a r^{n-1} \\
& u_{n}=5 \times 2^{n-1} \\
& 5 \times 2^{n-1}=20480 \\
& 2^{n-1}=4096 \\
& \ln 2^{n-1}=\ln 4096 \\
& (n-1) \ln 2=\ln 4096 \\
& n-1=\frac{\ln 4096}{\ln 2} \\
& n=13
\end{aligned}
$$

(4) For each of the following geometric sequences
(i) identify a and r
(ii) find an expression for the nth term.
(a) $1458,486,162,54, \ldots$
(b) $4,-8,16,-32, \ldots$
(c) $0 \cdot 16,0 \cdot 28,0 \cdot 1024, \ldots$
(d) $\frac{2}{3}, \frac{4}{15}, \frac{8}{75}, \frac{16}{375}, \ldots$
(a) (i) $a=1458, r=\frac{486}{1458}=\frac{1}{3}$
(ii) $u_{n}=a r^{n-1}$

$$
u_{n}=1458\left(\frac{1}{3}\right)^{n-1}
$$

(b) (i) $a=4, \quad r=\frac{-8}{4}=-2$
(ii) $u_{n}=a r^{n-1}$

$$
u_{n}=4(-2)^{n-1}
$$

(c) (i) $a=0 \cdot 16=\frac{4}{25}, \quad r=\frac{0 \cdot 128}{0 \cdot 16}=\frac{4}{5}$
(ii) $u_{n}=a r^{n-1}$

$$
u_{n}=\frac{4}{25}\left(\frac{4}{5}\right)^{n-1}
$$

(d) (i) $a=\frac{2}{3}, \quad r=\frac{4 / 15}{2 / 3}=\frac{2}{5}$
(ii) $u_{n}=a r^{n-1}$

$$
u_{n}=\frac{2}{3}\left(\frac{2}{5}\right)^{n-1}
$$

(5) (a) The first term of a geometric sequence is 25 . The tenth term is 139 . Calculate the common ratio to $2 \mathrm{~d} . \mathrm{p}$.
(b) The common ratio of a geometric sequence is $0 \cdot 98$. The 8 th term is 131 . What is the first term to the nearest whole number?
(a) $a=25, u_{10}=139$

$$
\begin{aligned}
u_{10} & =25 \times r^{n-1} \\
139 & =25 \times r^{9} \\
r^{9} & =\frac{139}{25} \\
r & =\sqrt[9]{\frac{139}{25}} \\
r & =1.21
\end{aligned}
$$

(b) $r=0.98, u_{8}=131$

$$
\begin{aligned}
u_{8} & =a \times 0 \cdot 98^{8-1} \\
131 & =a \times 0 \cdot 98^{7} \\
a & =151
\end{aligned}
$$

(6) Find the sum of the first 10 terms of the geometric series $1+\frac{1}{2}+\frac{1}{4}+\ldots$

$$
\begin{aligned}
a=1, \quad r=\frac{1 / 2}{1}=\frac{1}{2} \quad & S_{10}
\end{aligned}=\frac{1\left(1-(1 / 2)^{10}\right)}{1-1 / 2}, ~ \begin{aligned}
S_{10} & =2\left(1-\frac{1}{1024}\right) \\
S_{10} & =\frac{1023}{512}
\end{aligned}
$$

(7) Find the sum to six terms of the geometric sequence whose first term is 4 and whose common ratio is $\frac{3}{2}$.

$$
\begin{aligned}
a=4, \quad r=\frac{3}{2} \quad S_{6}=\frac{4\left(1-(3 / 2)^{6}\right)}{1-3 / 2} \\
S_{6}=83 \cdot 125
\end{aligned}
$$

(8) A geometric sequence starts $12,15,18 \cdot 75, \ldots$. What is the smallest value of n for which S_{n} is bigger than 100?

$$
\begin{aligned}
a=12, \quad r=\frac{15}{21}=\frac{5}{4} \quad S_{n} & >100 \\
\frac{12\left(1-(5 / 4)^{n}\right)}{1-5 / 4} & >100 \\
-48\left(1-(5 / 4)^{n}\right) & >100 \\
48\left((5 / 4)^{n}-1\right) & >100 \\
(5 / 4)^{n} & >\frac{100}{48}+1 \\
n \ln \left(\frac{5}{4}\right) & >\ln \left(\frac{37}{12}\right) \\
n & >\frac{\ln (37 / 12)}{\ln (5 / 4)} \\
n & >5 \cdot 046 \\
n & =6 \text { as } n \in \mathbb{N}
\end{aligned}
$$

(9) A geometric series is such that $S_{3}=14$ and $S_{6}=126$. Identify the series.

$$
14=\frac{a\left(1-r^{3}\right)}{1-r} \text { and } 126=\frac{a\left(1-r^{6}\right)}{1-r} \text { so } \frac{126}{14}=\frac{1-r^{6}}{1-r^{3}}\left(1-r^{3}\right)=1-r^{6} .
$$

The series is $2+4+8+\ldots$. The nth term is given by $u_{n}=2 \times 2^{n-1}$.
(10) Calculate each of these geometric series to the required number of terms.
(a) $\frac{1}{4}+\frac{1}{12}+\frac{1}{30}+\ldots$ to 6 terms.
(b) $12-10+\frac{25}{3}-\ldots$ to 7 terms.
(c) $50-20+8-\ldots$ to 8 terms.
(a) $a=\frac{1}{4}, r=\frac{1 / 12}{1 / 4}=\frac{1}{3} \quad S_{6}=\frac{\frac{1}{4}\left(1-(1 / 3)^{6}\right)}{1-1 / 3}=\frac{91}{243}$
(b) $a=12, \quad r=\frac{-10}{12}=\frac{-5}{6}$
$S_{7}=\frac{12\left(1-(-5 / 6)^{7}\right)}{1+5 / 6}=\frac{32551}{3888}$
(c) $a=50, \quad r=\frac{-20}{50}=\frac{-2}{5}$
$S_{8}=\frac{50\left(1-(-2 / 5)^{8}\right)}{1+2 / 5}=\frac{111534}{3125}$
(11) A pendulum is slowly coming to rest. With each swing the arc it sweeps is reduced by 2%. Each swing takes the same time, $1 \cdot 2$ seconds. The first sweep is a $12^{\circ} \mathrm{arc}$.
(a) How many degrees has the pendulum swung through in five swings?
(b) How long will it take before a total exceeding 90° has been swept through?
(a) The sequence is $12^{\circ}, 11 \cdot 76^{\circ}, \ldots$

$$
a=12, r=0.98 \quad S_{5}=\frac{12\left(1-0.98^{5}\right)}{1-0.98}=57.65^{\circ}
$$

(b) $\frac{12\left(1-0.98^{n}\right)}{1-0.98}>90$
$1-0.98^{n}>0.15$
$0.98^{n}<0.85$
$n \ln 0.98<\ln 0.85$
$n>\frac{\ln 0.85}{\ln 0.98} \quad(\ln 0.98$ is -ve so reverse inequality sign)
$n>8.04$
$\therefore 9$ whole swings are needed before a total exceeding 90° has been swept through. This will take $9 \times 1 \cdot 2=10 \cdot 8$ seconds.

Questions

(1) (a) Find an expression for the nth term of the geometric sequence $4,-8,16,-32, \ldots$
(b) Calculate the 10th term.
(2) A geometric sequence of positive terms has $3^{\text {rd }}$ term 18 and $7^{\text {th }}$ term 1458. Find the $5^{\text {th }}$ term of this sequence.
(3) Given the geometric sequence $6,12,24,48, \ldots$, find the value of n for which $u_{n}=98304$.
(4) A geometric sequence of positive terms has $1^{\text {st }}$ term 9 and $3^{\text {rd }}$ term 36 . Find the $10^{\text {th }}$ term of this sequence.
(5) Find the sum to 9 terms of the series $64+32+16+8+\ldots$
(6) Evaluate the sum of the geometric series $4+20+100+\ldots+62500$
(7) A geometric sequence has $3^{\text {rd }}$ term 54 and $6^{\text {th }}$ term 1458.

Find the sum of the first 8 terms of this sequence.
(8) A geometric sequence has 5 th term 18 and $8^{\text {th }}$ term $\frac{2}{3}$. Find the sum of the first 6 terms of this sequence.
(9) (a) Find an expression for the sum of the first n terms of the geometric sequence $10,30,90,270, \ldots$
(b) Find the number of terms which must be added to give a sum of 32800 .
(c) Find the least number of terms which must be added to give a sum exceeding 1000000.
(10) Find the least number of terms of the geometric series $2+4+8+16+\ldots$ which must be added to give a sum exceeding 100000.
(11) A geometric sequence has $1^{\text {st }}$ term 5 and $4^{\text {th }}$ term 40 .

Find an expression for the sum to n terms of this sequence and hence, find the least number of terms which must be added to give a sum exceeding 100000.
(12) A line 315 cm long is divided into 6 parts such that the lengths of the parts form a geometric sequence.
Given that the length of the longest part is 32 times the length of the shortest part, find the length of the shortest part.
(13) For a certain sequence it has been found that the sum to n terms is $S_{n}=\frac{3^{n}-1}{2}, n \geq 1$. Find the type of sequence an the value of u_{6}, the $6^{\text {th }}$ term.

Convergence and Divergence of Infinite Geometric Series

Examples

(1) Consider the geometric series $27+2 \cdot 7+0 \cdot 27+0 \cdot 027+\ldots$
$S_{1}=27$
$S_{2}=27+2 \cdot 7=29.7$
$S_{3}=27+2 \cdot 7+0 \cdot 27=29.97$
$S_{4}=27+2 \cdot 7+0 \cdot 27+0 \cdot 027=29 \cdot 997$
If we were to continue we would see that $S_{n} \rightarrow 30$ as $n \rightarrow \infty$.
This is a convergent series. We write $S_{\infty}=30$.
(2) $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
$S_{1}=1$
$S_{2}=1+\frac{1}{2}=1 \cdot 5$
$S_{3}=1+\frac{1}{2}+\frac{1}{4}=1.75$
$S_{4}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=1 \cdot 875$
$S_{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=1 \cdot 9375$
In this case $S_{n} \rightarrow 2$ as $n \rightarrow \infty$. We write $S_{\infty}=2$
(3) $1+2+4+8+16+\ldots$
$S_{1}=1$
$S_{2}=1+2=3$
$S_{3}=1+2+4=7$
$S_{4}=1+2+4+8=15$

This time as $n \rightarrow \infty, S_{n}$ continues to increase.
This is a divergent series. S_{∞} does not exist.

Condition for Existence of Sum to Infinity

Consider the formula for S_{n}.
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \quad r \neq 1$
When $-1<r<1, r^{n} \rightarrow 0$ as $n \rightarrow \infty$. So as $n \rightarrow \infty, S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \rightarrow \frac{a(1-0)}{1-r}=\frac{a}{1-r}$
The sum to infinity of a geometric series exists if $|r|<1$ and can be calculated by

$$
S_{\infty}=\frac{a}{1-r}
$$

Examples

(1) Find the sum to infinity of the series $32+16+8+4+2+\ldots$

$$
\begin{aligned}
& a=32, \quad r=\frac{16}{32}=\frac{1}{2} \quad|r|<1 \text { so } S_{\infty} \text { exists. } \\
& S_{\infty}=\frac{a}{1-r}=\frac{32}{1-1 / 2}=64
\end{aligned}
$$

(2) Find the sum to infinity of the series $32-16+8-4+2-\ldots$

$$
\begin{aligned}
& a=32, r=\frac{-16}{32}=\frac{-1}{2} \quad|r|<1 \text { so } S_{\infty} \text { exists. } \\
& S_{\infty}=\frac{a}{1-r}=\frac{32}{1+\frac{1}{2}}=\frac{64}{3}
\end{aligned}
$$

Questions

(1) Explain why the geometric series $27+18+12+\ldots$ has a sum to infinity and find the sum to infinity.
(2) A geometric sequence has $1^{\text {st }}$ term 48 and a sum to infinity of 64 .

Find the $4^{\text {th }}$ term of the sequence.
(3) A geometric series has a common ratio of $\frac{2}{5}$ and the sum to infinity of the series is 25 . Find the $1^{\text {st }}$ and the $4^{\text {th }}$ terms of this series.

Sigma Notation

The notation $\sum_{k=a}^{b} f(k)$ is shorthand for $f(a)+f(a+1)+f(a+2)+\ldots+f(b)$ where a and b are integers and $a \leq b$.

Examples

(1) $\sum_{k=1}^{5} k^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55$
(2) $\sum_{r=2}^{4} \frac{1}{r}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}$
(3) $\sum_{k=0}^{4}(-2)^{k}=(-2)^{0}+(-2)^{1}+(-2)^{2}+(-2)^{3}+(-2)^{4}=1-2+4-8+16=11$
(4) $\sum_{r=-1}^{1}(2 r+5)(r-3)=(2(-1)+5)(-1-3)+(2(0)+5)(0-3)+(2(1)+5)(1-3)$

$$
\begin{aligned}
& =(3)(-4)+(5)(-3)+(7)(-2) \\
& =-12-15-14 \\
& =-41
\end{aligned}
$$

(5) Find $\sum_{k=1}^{50}(2 k-3)$

It is best to write out the first few terms to see what kind of series it is and get the first term and common difference or ratio.

The series is $-1+1+3+5+7+\ldots$ summed to 50 terms.
It is arithmetic with $a=-1, d=2$ and $n=50$.

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \text { so } S_{50}=\frac{50}{2}[2(-1)+(50-1) 2]=2400
$$

(6) Find $\sum_{r=1}^{\infty}\left(\frac{-1}{2}\right)^{r} \quad$ The series is $\left(\frac{-1}{2}\right)+\left(\frac{-1}{2}\right)^{2}+\left(\frac{-1}{2}\right)^{3}+\ldots$

It is geometric with $a=\frac{-1}{2}, r=\frac{-1}{2} . \quad|r|<1$ so S_{∞} exists.
$S_{\infty}=\frac{a}{1-r}$ so $S_{\infty}=\frac{-1 / 2}{1-(-1 / 2)}=\frac{-1}{3}$

Some Useful Properties

$$
\sum_{k=1}^{n}(f(k)+g(k))=\sum_{k=1}^{n} f(k)+\sum_{k=1}^{n} g(k)
$$

$$
\sum_{k=1}^{n} a f(k)=a \sum_{k=1}^{n} f(k), \quad \text { where } a \text { is a constant. }
$$

Some Useful Standard Formulae

$$
\begin{aligned}
& \sum_{k=1}^{n} 1=1+1+1+\ldots \ldots+1=n \\
& \sum_{k=1}^{n} k=\frac{n(n+1)}{2} \\
& \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4} \\
& \sum_{k=1}^{n}(a k+b)=a \sum_{k=1}^{n} k+b \sum_{k=1}^{n} 1=\frac{a n}{2}(n+1)+b n
\end{aligned}
$$

No need to memorise these as they are in the formula list! Notice that $\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}$

Examples

(1) Evaluate $\sum_{k=1}^{10}\left(2 k^{3}-3 k\right)$

$$
\begin{aligned}
\sum_{k=1}^{10}\left(2 k^{3}-3 k\right) & =2 \sum_{k=1}^{10} k^{3}-3 \sum_{k=1}^{10} k \\
& =2\left(\frac{10^{2} \times 11^{2}}{4}\right)-3\left(\frac{10 \times 11}{2}\right) \quad \text { (using formulae from above) } \\
& =2(3025)-3(55) \\
& =5885
\end{aligned}
$$

(2) Evaluate the sum of the series $\left(1 \times 4^{2}\right)+\left(2 \times 5^{2}\right)+\left(3 \times 6^{2}\right)+\ldots+\left(12 \times 15^{2}\right)$

$$
\begin{aligned}
& =\sum_{k=1}^{12} k(k+3)^{2} \\
& =\sum_{k=1}^{12} k\left(k^{2}+6 k+9\right) \\
& =\sum_{k=1}^{12} k^{3}+6 k^{2}+9 k \\
& =\sum_{k=1}^{12} k^{3}+6 \sum_{k=1}^{12} k^{2}+9 \sum_{k=1}^{12} k \\
& =\left(\frac{12^{2} \times 13^{2}}{4}\right)+6\left(\frac{12 \times 13 \times 25}{6}\right)+9\left(\frac{12 \times 13}{2}\right) \\
& =6084+3900+702 \\
& =10686
\end{aligned}
$$

(3) Obtain an expression for $\sum_{k=1}^{n}\left(2 k^{2}-5\right)$.

Give your answer as a single algebraic fraction in its simplest form.

$$
\begin{aligned}
\sum_{k=1}^{n}\left(2 k^{2}-5\right) & =2 \sum_{k=1}^{n} k^{2}-5 \sum_{k=1}^{n} 1 \\
& =2\left(\frac{n(n+1)(2 n+1)}{6}\right)-5 n \\
& =\frac{n(n+1)(2 n+1)}{3}-\frac{15 n}{3} \\
& =\frac{n((n+1)(2 n+1)-15)}{3} \\
& =\frac{n\left(2 n^{2}+3 n-14\right)}{3} \\
& =\frac{n(2 n+7)(n-2)}{3}
\end{aligned}
$$

(4) Evaluate $\sum_{k=25}^{40} k^{2}$

$$
\begin{aligned}
\sum_{k=25}^{40} k^{2} & =\sum_{k=1}^{40} k^{2}-\sum_{k=1}^{24} k^{2} \\
& =\left(\frac{40 \times 41 \times 81}{6}\right)-\left(\frac{24 \times 25 \times 49}{6}\right) \\
& =22140-4900 \\
& =17240
\end{aligned}
$$

Questions

(1) Evaluate
(a) $\sum_{k=1}^{12}\left(2 k^{2}+3 k-1\right)$
(b) $\sum_{k=1}^{8} k^{2}(4 k+1)$
(c) $\sum_{k=1}^{10}\left(k^{3}+3 k^{2}-5 k+2\right)$
(d) $\sum_{k=1}^{8} k^{2}(4 k+1)$
(2) Evaluate the sum of these series by writing them in the form $\sum_{k=1}^{n} f(k)$
(a) $(1 \times 5)+(2 \times 6)+(3 \times 7)+(4 \times 8)+\ldots+(15 \times 19)$
(b) $(1 \times 1)+(2 \times 4)+(3 \times 7)+(4 \times 10)+\ldots+(25 \times 73)$
(c) $\left(1^{2} \times 3\right)+\left(2^{2} \times 4\right)+\left(3^{2} \times 5\right)+\left(4^{2} \times 6\right)+\ldots+\left(20^{2} \times 22\right)$
(3) Find an expression for these summations in simplest form.
(a) $\sum_{k=1}^{n}\left(2 k^{2}-5\right)$
(b) $\sum_{k=1}^{n}(k-1)(k+1)$
(c) $\sum_{k=1}^{n} k(k+1)^{2}$
(d) $\sum_{k=1}^{n} k(k+1)(2 k-1)$
(4) Evaluate
(a) $\sum_{k=36}^{60} k$
(b) $\sum_{k=15}^{30} k^{2}$
(c) $\sum_{k=16}^{24} k^{3}$

Differentiation and Integration of Series

Examples

(1) Find the sum to infinity of $1-x+x^{2}-x^{3}+x^{4}-\ldots,|x|<1$

Hence, use integration to find a series for $\ln (1+x)$.
$1-x+x^{2}-x^{3}+x^{4}-\ldots \quad$ is geometric with $a=1$ and $r=-x$,
$|-x|<1$ so a sum to infinity exists. $S_{\infty}=\frac{1}{1-(-x)}=\frac{1}{(1+x)}$
So $\frac{1}{(1+x)}=1-x+x^{2}-x^{3}+x^{4}-\ldots$
Integrating both sides.... $\int \frac{1}{(1+x)} d x=\int\left(1-x+x^{2}-x^{3}+x^{4}-\ldots\right) d x$

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \ldots+C
$$

Put $x=0$ to get $C=0$ so $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots .$. , when $|x|<1$
(2) Find the sum of $1+e^{x}+e^{2 x}+e^{3 x}+\ldots \ldots+e^{99 x}, \quad x \neq 0$

Use differentiation to find a formula for the series $e^{x}+2 e^{2 x}+3 e^{3 x}+\ldots \ldots+99 e^{99 x}, \quad x \neq 0$
The series is geometric with $a=1, r=e^{x}$ and $n=100$.

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text { so } S_{100}=\frac{1\left(1-e^{100 x}\right)}{1-e^{x}}=\frac{1-e^{100 x}}{1-e^{x}}, x \neq 0
$$

So $1+e^{x}+e^{2 x}+e^{3 x}+\ldots \ldots+e^{99 x}=\frac{1-e^{100 x}}{1-e^{x}}, \quad x \neq 0$

Differentiating each side

$$
\begin{aligned}
& e^{x}+2 e^{2 x}+3 e^{3 x}+\ldots \ldots+99 e^{99 x}=\frac{-100 e^{100 x}\left(1-e^{x}\right)-\left(1-e^{100 x}\right) \cdot-e^{x}}{\left(1-e^{x}\right)^{2}} \\
& e^{x}+2 e^{2 x}+3 e^{3 x}+\ldots \ldots+99 e^{99 x}=\frac{99 e^{101 x}-100 e^{100 x}+e^{x}}{\left(1-e^{x}\right)^{2}}
\end{aligned}
$$

Past Paper Questions

2002-A10

Define $S_{n}(x)$ by

$$
S_{n}(x)=1+2 x+3 x^{2}+\ldots+n x^{n-1}
$$

where n is a positive integer.
Express $S_{n}(1)$ in terms of n.
By considering $(1-x) S_{n}(x)$, show that

$$
S_{n}(x)=\frac{1-x^{n}}{(1-x)^{2}}-\frac{n x^{n}}{(1-x)}, x \neq 1
$$

Obtain the value of $\lim _{n \rightarrow \infty}\left\{\frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\ldots+\frac{n}{3^{n-1}}+\frac{3}{2} \cdot \frac{n}{3^{n}}\right\}$.
(2, 4, 3 marks)

2003-A2

Given that $u_{k}=11-2 k, \quad(k \geq 1)$, obtain a formula for $S_{n}=\sum_{k=1}^{n} u_{k}$.
Find the values of n for which $S_{n}=21$.

2004-Q16

(a) Obtain the sum of the series $8+11+14+\ldots+56$.
(b) A geometric sequence of positive terms has first term 2 , and the sum of the first three terms is 266, Calculate the common ratio.
(c) An arithmetic sequence, A, has first term a and common difference 2 , and a geometric sequence, B, has first term a and common ratio 2 . The first four terms of each sequence have the same sum. Obtain the value of a.
Obtain the smallest value of n such that the sum to n terms for sequence B is more than twice the sum to n terms for the sequence A.

2005-Q4

The sum, $S(n)$, of the first n terms of a sequence, $u_{1}, u_{2}, u_{3}, \ldots$ is given by

$$
S(n)=8 n-n^{2}, \quad n \geq 1 .
$$

Calculate the values of u_{1}, u_{2}, u_{3} and state what type of sequence it is.
Obtain a formula for u_{n} in terms of n, simplifying your answer.
(3, 2 marks)

2006-Q16

The first three terms of a geometric sequence are $\frac{x(x+1)}{(x-2)}, \frac{x(x+1)^{2}}{(x-2)^{2}}$ and $\frac{x(x+1)^{3}}{(x-2)^{3}}$, where $x<2$.
(a) Obtain expressions for the common ratio and the nth term of the sequence.
(b) Find an expression for the sum of the first n terms of the sequence.
(c) Obtain the range of values of x for which the sequence has a sum to infinity and find an expression for the sum to infinity.

2007-Q9

Show that $\sum_{r=1}^{n}(4-6 r)=n-3 n^{2}$.
Hence write down a formula for $\sum_{r=1}^{2 q}(4-6 r)$.
Show that $\sum_{r=q+1}^{2 q}(4-6 r)=q-9 q^{2}$.
(2, 1, 2 marks)

2008-Q1

The first term of an arithmetic sequence is 2 and the 20th term is 97 . Obtain the sum of the first 50 terms.

2009-Q12

The first two terms of a geometric sequence are $a_{1}=p$ and $a_{2}=p^{2}$.
Obtain expressions for S_{n} and $S_{2 n}$ in terms of p, where $S_{k}=\sum_{j=1}^{k} a_{j}$.
Given that $S_{2 n}=65 S_{n}$ show that $p^{n}=64$.
Given also that $a_{3}=2 p$ and that $p>0$, obtain the exact value of p and hence the value of n.
(1, 1, 2, 1, 1 marks)

2010-Q2

The second and third terms of a geometric series are - 6 and 3 respectively. Explain why the series has a sum to infinity and obtain this sum.

2011-Q8

(1) Write down an expression for $\sum_{r=1}^{n} r^{3}-\left(\sum_{r=1}^{n} r\right)^{2}$
and an expression for $\sum_{r=1}^{n} r^{3}+\left(\sum_{r=1}^{n} r\right)^{2}$.

(1, 3 marks)

2011-Q13

The first three terms of an arithmetic sequence are $a, \frac{1}{a}, 1$ where $a<0$.
Obtain the value of a and the common difference.
Obtain the smallest value of n for which the sum of the first n terms is greater than 1000 .
(5, 4 marks)

2012-Q2

The first and fourth terms of a geometric sequence are 2048 and 256 respectively. Calculate the value of the common ratio.

Given that the sum of the first n terms is 4088 , find the value of n.
(2, 3 marks)

2013-Q17

Write down the sums to infinity of the geometric series

$$
1+x+x^{2}+x^{3}+\ldots \ldots
$$

and

$$
1-x+x^{2}-x^{3}+\ldots \ldots
$$

valid for $|x|<1$.
Assuming that it is permitted to integrate an infinite series term by term, show that, for $|x|<1$,

$$
\ln \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \ldots\right)
$$

Show how this series can be used to evaluate $\ln 2$.
Hence determine the value of $\ln 2$ correct to 3 decimal places.
(7, 3 marks)

2015-Q3

The sum of the first twenty terms of an arithmetic sequence is 320 .
The twenty-first term is 37 .
What is the sum of the first ten terms?

2016-Q2

A geometric sequence has second and fifth terms 108 and 4 respectively.
(a) Calculate the value of the common ratio.
(b) State why the associated geometric series has a sum to infinity.
(c) Find the value of this sum to infinity.

2017-Q4

The fifth term of an arithmetic sequence is -6 and the twelfth term is -34 .
(a) Determine the values of the first term and the common difference.
(b) Obtain algebraically the value of n for which $S_{n}=-144$.
(2, 3 marks)

