The Binomial Theorem

Prerequisites: Cancelling fractions; summation notation; rules of indices.
Maths Applications: Proving trig. identities using complex numbers; probability.

Real-World Applications: Counting problems; Hardy-Weinberg Formula (biology).

Factorials and Binomial Coefficients

In a race with 3 people, in how many ways can the runners finish? There are 3 possibilities for the first place; for each of these 3 possibilities, there are 2 possibilities for the remaining 2 places; for each of these 2 possibilities, there is only 1 possibility for the final place. So, there are $3 \times 2 \times 1=6$ ways the runners can finish.

Definition:

For $n \in \mathbb{N}$, the factorial of n (aka n factorial or factorial n) is,

$$
n!\stackrel{\operatorname{def}}{=} n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1
$$

Note that $1!=1$ and the convention $0!\stackrel{\text { def }}{=} 1$ is made.

In how many ways can a child pick 3 crayons from a selection of 5 coloured crayons (all different colours)? There are $5 \times 4 \times 3=60$ ways of choosing 3 crayons, if the order in which they are taken matters. However, the child isn't interested in which order they're picked, so this answer of 60 is too big. Whichever 3 colours are picked, there are $3!=6$ ways of doing so. Therefore, the value of 60 is 6 times too large; hence, the actual number of ways of choosing 3 crayons from 5 without worrying about the order is $60 \div 6=10$.

The order matters in a permutation, as opposed to a combination.

Definition:

The number of ways of choosing r objects from n without taking into account the order (aka n choose r or the number of combinations of r objects from n) is given by the binomial coefficient ${ }^{n} C_{r}$ defined by,

$$
{ }^{n} C_{r} \equiv\binom{n}{r} \stackrel{\text { def }}{=} \frac{n!}{r!(n-r)!}
$$

Evaluating a Binomial Coefficient Without a Calculator

Example 1

$$
\begin{aligned}
{ }^{7} C_{4} & =\frac{7!}{4!(7-4)!} \\
& =\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1) \times(3 \times 2 \times 1)} \\
& =\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \\
& =35
\end{aligned}
$$

Properties of Binomial Coefficients

- $\binom{n}{r}=\binom{n}{n-r}$
- $\binom{n}{r-1}+\binom{n}{r}=\binom{n+1}{r} \quad$ (Khayyam-Pascal Identity)

Example 2

Solve the equation $\binom{n}{n-2}=15$.

$$
\frac{n!}{2!(n-2)!}=15
$$

$$
\begin{aligned}
\frac{n(n-1)(n-2)!}{2(n-2)!} & =15 \\
\frac{n(n-1)}{2} & =15 \\
n^{2}-n & =30 \\
n^{2}-n-30 & =0 \\
(n-6)(n+5) & =0
\end{aligned}
$$

Hence, $n=6$ or $n=-5$. However, as n cannot be negative, $n=6$.

Example 3

Show that $\binom{n+1}{3}-\binom{n}{3}=\binom{n}{2}$.

A very simple proof can be obtained by replacing r with 2 in the Khayyam-Pascal Identity. However a more ' get your fingers dirty ' method will be given, which illustrates some general techniques when manipulating binomial coefficients.

Starting with the LHS,

$$
\begin{aligned}
\binom{n+1}{3}-\binom{n}{3} & =\frac{(n+1)!}{3!(n-2)!}-\frac{n!}{3!(n-3)!} \\
& =\frac{(n+1) n!}{3!(n-2)(n-3)!}-\frac{n!}{3!(n-3)!} \\
& =\frac{n!}{3!(n-3)!}\left(\frac{n+1}{n-2}-1\right) \\
& =\frac{n!}{3!(n-3)!}\left(\frac{n+1-n+2}{n-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n!}{3!(n-3)!}\left(\frac{3}{n-2}\right) \\
& =\frac{n!3}{3 \cdot 2!(n-3)!(n-2)} \\
& =\frac{n!}{2!(n-2)!} \\
& =\binom{n}{2}
\end{aligned}
$$

which equals the RHS.

Pascal's Triangle

Pascal's triangle - also known as Pingala's triangle, Khayyam's triangle, Yang Hui's triangle and Tartaglia's triangle, after mathematicians who discovered or studied the triangle before Pascal - is the following infinite arrangement of evaluated binomial coefficients:

The top row consisting of the single entry 1 is the $0^{\text {th }}$ row. Each number not on an edge of the triangle is obtained by adding the 2 numbers in the previous row and just to the right and left of that entry (this is the Khayyam-Pascal identity).

The Binomial Theorem

Taking powers of a binomial can be achieved via the following theorem.

Theorem (Binomial Theorem):

For whole numbers r and n,

$$
(x+y)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{n-r} y^{r}
$$

Written out fully, the RHS is called the binomial expansion of $(x+y)^{n}$.

Using the first property of the binomial coefficients and a little relabelling, the Binomial Theorem can be written slightly differently.

Corollary:

$$
(x+y)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r} y^{n-r}
$$

Note that there are $n+1$ terms in any binomial expansion.

Expanding a Binomial

Example 4

Expand $(x+y)^{5}$.

$$
\begin{aligned}
(x+y)^{5}= & \sum_{r=0}^{5}\binom{5}{r} x^{5-r} y^{r} \\
= & \binom{5}{0} x^{5} y^{0}+\binom{5}{1} x^{4} y^{1}+\binom{5}{2} x^{3} y^{2}+ \\
& \binom{5}{3} x^{2} y^{3}+\binom{5}{4} x^{1} y^{4}+\binom{5}{5} x^{0} y^{5}
\end{aligned}
$$

$$
=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
$$

Note that the powers of x go up by 1 as the powers of y go down by 1 , and that the sum of the powers of x and y equal 5 . Also, the number of terms in the expansion is one more than the value of n. The binomial coefficients are evaluated using Pascal's triangle.

Example 5

Expand $\left(x^{2}-\frac{2}{x}\right)^{4}$

$$
\begin{aligned}
\left(x^{2}-\frac{2}{x}\right)^{4}= & \sum_{r=0}^{4}\binom{4}{r}\left(x^{2}\right)^{4-r}\left(-\frac{2}{x}\right)^{r} \\
= & \binom{4}{0}\left(x^{2}\right)^{4}\left(-\frac{2}{x}\right)^{0}+\binom{4}{1}\left(x^{2}\right)^{3}\left(-\frac{2}{x}\right)^{1}+\binom{4}{2}\left(x^{2}\right)^{2}\left(-\frac{2}{x}\right)^{2} \\
& +\binom{4}{3}\left(x^{2}\right)^{1}\left(-\frac{2}{x}\right)^{3}+\binom{4}{4}\left(x^{2}\right)^{0}\left(-\frac{2}{x}\right)^{4} \\
= & x^{8}(1)+4 x^{6}\left(-\frac{2}{x}\right)+6 x^{4}\left(\frac{4}{x^{2}}\right)+4 x^{2}\left(-\frac{8}{x^{3}}\right)+\left(\frac{16}{x^{4}}\right) \\
= & x^{8}-8 x^{5}+24 x^{2}-\frac{32}{x}+\frac{16}{x^{4}}
\end{aligned}
$$

Finding the General Term

Definition:

The general term in a binomial expansion is,

$$
{ }^{n} C_{r} x^{n-r} y^{r}
$$

Essentially, the general term is everything in the Binomial Theorem apart from the summation sign.

Example 6

Find and simplify the general term in the expansion of $\left(x^{2}+\frac{3}{x}\right)^{13}$.

$$
\left(x^{2}+\frac{3}{x}\right)^{13}=\sum_{r=0}^{13}\binom{13}{r}\left(x^{2}\right)^{13-r}\left(\frac{3}{x}\right)^{r}
$$

The general term is the expression after the summation sign on the RHS of the above equation. So,

General term $=\binom{13}{r}\left(x^{2}\right)^{13-r}\left(\frac{3}{x}\right)^{r}=\binom{13}{r} 3^{r} x^{26-2 r} x^{-r}=\binom{13}{r} 3^{r} x^{26-3 r}$

Finding a Specific Term or Coefficient

Example 7

Find the term independent of x in the expansion of $\left(x-\frac{5}{x^{2}}\right)^{9}$.

$$
\text { General term }=\binom{9}{r} x^{9-r}\left(-\frac{5}{x^{2}}\right)^{r}=\binom{9}{r}(-5)^{r} x^{9-3 r}
$$

The term independent of x occurs when the index $9-3 r=0$, i.e. when $r=3$. Thus, the required term is,

$$
\binom{9}{3}(-5)^{3}=\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1) \times(6 \times 5 \times 4 \times 3 \times 2 \times 1)} \times(-125)=-10500
$$

Example 8

Find the term containing x^{28} in the expansion of $\left(x^{2}+\frac{x}{2}\right)^{15}$.

$$
\text { General term }=\binom{15}{r}\left(x^{2}\right)^{15-r}\left(\frac{x}{2}\right)^{r}=\binom{15}{r} 2^{-r} x^{30-r}
$$

The term containing x^{28} occurs when the index $30-r=28$, i.e. when $r=2$. Thus, the required term is,

$$
\binom{15}{2} 2^{-2} x^{28}=\frac{15!}{2!13!} \times \frac{1}{4} x^{28}=\frac{105}{4} x^{28}
$$

Example 9

Find the coefficient of x^{4} in the expansion of $(2-x)^{11}$.

$$
\text { General term }=\binom{11}{r} 2^{11-r}(-x)^{r}=\binom{11}{r}(-1)^{r} 2^{11-r} x^{r}
$$

The coefficient of x^{4} occurs when $r=4$. Thus, the required coefficient is,

$$
\binom{11}{4}(-1)^{4} 2^{7}=\frac{11!}{4!7!} \times 128=42240
$$

Evaluating a Natural Power of a Decimal

Example 10

Calculate the value of $(0 \cdot 8)^{4}$ using the Binomial Theorem.

$$
(1+x)^{4}=1+4 x+6 x^{2}+4 x^{3}+x^{4}
$$

Letting $x=-0 \cdot 2$,

$$
\begin{aligned}
(0 \cdot 8)^{4} & =1+4(-0 \cdot 2)+6(-0 \cdot 2)^{2}+4(-0 \cdot 2)^{3}+(-0 \cdot 2)^{4} \\
& =1-0 \cdot 8+6(0 \cdot 04)-4(0 \cdot 008)+0 \cdot 0016 \\
& =1-0 \cdot 8+0 \cdot 24-0 \cdot 032+0 \cdot 0016 \\
& =0.4096
\end{aligned}
$$

Obviously, a calculator should be used for questions similar in spirit to Example 10.

Applications of the Binomial Theorem

The Binomial Theorem is often used to solve probabilistic problems.

Example 11

A fair coin is flipped 5 times. Calculate the probability of obtaining exactly 3 heads.

This problem can be solved by listing all possible combinations of heads and tails (e.g. HHHHH, HTHTH, etc.), picking those that give exactly 2 heads and dividing by the total number of possibilities. No doubt, this is a very lengthy process. However, the Binomial Theorem can be used to sort this out very quickly.

If p stands for the probability of obtaining a head and q for the probability of obtaining a tail, then obviously $p+q=1$ (total probability equals 100%). Hence, and this is where the link to the Binomial Theorem comes in, $(p+q)^{n}=1$. In our case, $n=5$. Then,

$$
(p+q)^{5}=p^{5}+5 p^{4} q+10 p^{3} q^{2}+10 p^{2} q^{3}+5 p q^{4}+q^{5}
$$

The first term in this expansion gives the probability of obtaining 5 heads, the second term 4 heads and a tail etc. (check this using a tree diagram - for example, the coefficient 5 in the second term gives the number of ways 4 heads and 1 tail can be obtained). As the coin is fair, p $=q=\frac{1}{2}$. Thus, the required probability is,

$$
\begin{aligned}
P(\text { exactly } 3 \text { heads }) & =5 p^{4} q \\
& =5 \cdot\left(\frac{1}{2}\right)^{4} \cdot \frac{1}{2} \\
& =\frac{5}{32}
\end{aligned}
$$

Notice that the sum of the coefficients in the above expansion equals 32 (the total number of possibilities for 5 flips).

Example 12

If the probabilities of dominant (T) and recessive (t) alleles, denoted by p and q respectively, for an organism with n copies of the same chromosome are linked via the equation,

$$
(p+q)^{n}=1
$$

find the probability that an organism with 4 copies of the same chromosome has the genotype TTtt if $q=0 \cdot 2$.

The biological details of the problem are not relevant, only the general structure of the problem. We have $n=4$ and the genotype TTtt corresponds to the term $p^{2} q^{2}$ (2 T 's and 2 t 's) in the binomial expansion of $(p+q)^{4}$. Expanding this gives,

$$
(p+q)^{4}=p^{4}+4 p^{3} q+6 p^{2} q^{2}+4 p q^{3}+q^{4}
$$

Since $p+q=1, p=0 \cdot 8$. The required probability is thus,

$$
\begin{aligned}
P(T T t t) & =6 p^{2} q^{2} \\
& =6(0 \cdot 2)^{2}(0 \cdot 8)^{2} \\
& =0 \cdot 1536
\end{aligned}
$$

