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Complex Numbers 
 

Prerequisites: Expanding brackets; solving quadratics; finding angles using  

                       basic trigonometry; exact values.  

 

Maths Applications: Deriving trig. identities; solving polynomials. 

 

Real-World Applications: Electrical circuits; quantum mechanics;  

                                       relativity.  

  

Number Systems and Complex Numbers 
 

History of Complex Numbers 
 

There are lots of different types of numbers. The ones we know about 

include whole numbers (�), natural numbers (ℕ), integers (ℤ), rational 

numbers (ℚ) and real numbers (ℝ). Historically, the above types of 

numbers arose out of the need to solve real world problems, eventually 

extending to the need for solving equations.  

 

Complex numbers arose out of a similar need to solve cubic equations. 

There is a very complicated formula, called the Cubic Formula, for solving 
any cubic equation (just like for the quadratic equation there is the 

Quadratic Formula). The equation x 3  −  x  =  0 obviously has the 3 real 
roots x  =  0, 1 and − 1. However, the Cubic Formula gives (ask your 

teacher how),  
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Clearly, there has to be some way of getting the 3 real roots from this. 

The square root of − 1 has a crucial role here. Clearly, we can’t ‘ take the 

square root of − 1 ’. Or can we ? Until fairly recent times, people did not 

believe in negative numbers. During the 18th century, negative solutions to 

equations were ignored. So, what we do to reconcile the above 

discrepancy is to introduce a new symbol, denoted by i, for the square 

root of − 1 (just like − 4 is a symbol for the ‘ solution ’ to x  +  4  =   0; in 
the 18th century, a ‘ solution ’ was normally a positive number). Then we 
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just get on with it. We will solve the above problem in a later section. 

Numbers involving i were called imaginary numbers, but they now go by a 

different name. 

 

Cartesian Form of a Complex Number 
 

Definition: 

 

A complex number is a number of the form z   =   x  +   iy  where x, y ∈ ℝ 

and i 2  =  − 1. The real number x  is called the real part of z (Re(z)) and 
the real number y  is called the imaginary part of z (Im(z)). 

 
Writing a complex number as z   =   x  +   iy  is known as the Cartesian 

form of z.   
 

Theorem: 

 

Complex numbers are equal if they have the same real parts and the same 

imaginary parts (and vice versa). 

 
Example 1 

 
If the complex numbers z   =   4  +   5 i and w   =   (2p  −   q)x  +   (p  +   q) 
i    are equal, find p  and q. 
 

As z and w  are equal, their real and imaginary parts can be equated to 

give,  

 

2p   −    q   =   4 

 

 p   +    q   =   5 

 

The solution of these simultaneous equations is p   =   3 and q   =   2. 

 

Definition: 

 

The set of all complex numbers is the set defined by,  

 

ℂ  
def

=  { x     y  i  :+  x, y ∈  ℝ, }   2i   1= −  
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The Algebra of Complex Numbers 
 

Addition, Subtraction and Multiplication 
 

Theorem: 

 

Complex numbers are added (subtracted) by adding (subtracting) the real 

parts together and by adding (subtracting) the imaginary parts together,  

 

(a  +   ib )  ±   (c  +   id )  =  (a   ±   c)  +  i (b  ±   d) 

 
Example 2 

 

Add the complex numbers z   =   4  +   5 i and w   =   − 7  +   i. 

 

z    +    w    =   (4  +   5 i)  +   (− 7  +   i)       

 

                    =   (4  −   7 )  +   (5  +   1) i      

 

                                                       =   − 3  +   6 i   

 

Example 3 

  

Find z   −   w  when z   =   5  +   2 i and w   =   4  −  9 i. 

 

  z   −   w   =   (5  +   2 i)  −   (4  −  9 i)   

 

                    =   (5  −   4 )  +   (2  +   9) i      

 

                                                       =   1  +   11 i   

 

Multiplication has a slightly more complicated rule. 

 

Theorem: 

 

Complex numbers are multiplied according to the rule,  

 

(a  +   ib ) (c  +   id )  =  (ac  −   bd )  +  i (ad  +   bc )   

 



Advanced Higher Notes (Unit 2)  Complex Numbers 

M Patel (April 2012) 4 St. Machar Academy 

In practice, this rule isn’t memorised; just expand brackets, remember to 

use i2  =  − 1 and simplify.   

 

Example 4 

 

Find the product of z   =   − 6  +   4 i and w   =   2  −  3 i. 

 

z w   =   (− 6  +   4 i) (2  −  3 i)  

 

                       =   − 12  +   8 i  +   18 i  −   12 i2   

 

     =   − 12  +   26 i  +   12 

 

                                                    =   26 i   

 

The Complex Conjugate and Division 
 

Definition: 

 

The complex conjugate of a complex number z   =   x  +   iy  is the 
complex number defined by,  

 

z   
def

=   x  −   iy 

 
The complex conjugate is obtained by changing the sign of the imaginary 

part while keeping the real part unchanged. 

 

Theorem: 

 

The complex conjugate of z   =   x  +   iy  satisfies,  
 

z z   =  x 2  +  y 2  

 

Notice that this product is always a real number. 

 

Example 5 
 

Evaluate z z  +   2z  when z   =   8  −   7 i. 

 

The conjugate is z   =   8  +  7 i. Hence,  
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z z   +   2z    =   
28   +   27   +    2(8  +  7 i) 

 

                       =   64  +   49  +   16  +  14 i 

 

                                                        =   129  +  14 i 

 

The conjugate is used to divide complex numbers. The trick is to multiply 

the denominator of the fraction by the complex conjugate of the 

denominator. 

 

Example 6 

 

Divide − 3  +   4 i by 2  +   3 i, expressing the answer in Cartesian form.   

 

3  4 i

2  3 i

− +

+
  =  

3  4 i

2  3 i

− +

+
  ×  

2  3 i

2  3 i

−

−
   

 

                   =  
( 3  4 i)(2  3 i)

(2  3 i)(2  3 i)

− + −

+ −
 

 

                         =  

26  8 i  9 i  12 i

4  9

− + + −

+
 

 

                                                         =  
6  17 i 

13

+
 

 

                                                         =  
6 

13
  +   

17 

13
 i 

 

Solving any Quadratic Equation 
 

Complex numbers allow any quadratic equation to be solved (more lies 

from your Higher teacher ?). 

 

Example 7 

 

Solve z 2  −   2z  +   5  =  0.  

 

The Quadratic Formula gives,  
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z   =   
    2 4 4(1)(5)

2

± −
 

 

                                      z   =   
   2 16

2

± −
 

 

                                      z   =   
2  4 i

2

±
 

 

                                      z   =   1  ±   2 i 

 

Example 8 

 

Find the square roots of 15  −   8 i.  

 

Let a  +   b i  be a square root of  15  −   8 i, i.e., 

 

(a  +   b i)2    =   15  −   8 i    

 

                    ( 2a   −   2b )  +   (2ab) i   =   15  −   8 i    

 

Equating real and imaginary parts gives,  

 

                                         2a   −   2b   =   15  

 

                                                 2ab   =   −  8    

 

The second equation gives, since  a ≠  0 (why ?),  

 

     b   =  −
4

a
 

 

Substituting this into the first equation then gives,  

 

2a   −   
2

16

a
   =   15 

 
4a   −   16   =   15 2a  

 
4a   −   15 2a   −   16   =   0 
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This is a quadratic equation for 2a  which factorises nicely as,  

 

( 2a   −   16) ( 2a   +   1)   =   0   

 

Hence, either 2a   =  16 or 2a   =  − 1. This second possibility cannot arise, 

as a ∈ ℝ. Hence, a   =  ±  4. Thus, b   =  ∓  1. So, the square roots of 15  −   

8 i are 4  −   i and  −  4  +   i.   

 

The Geometry of Complex Numbers 
 

Modulus, Argument and Argand Diagrams 
 
Complex numbers can be thought of as 2D vectors, the real and imaginary 

parts corresponding to x  and y  components, respectively. Vectors are 

also thought of as quantities that have magnitude (size) and direction. 

These quantities correspond to quantities known as the modulus and 

argument, respectively.  

 

Definition: 

 

The Complex Plane (aka Argand Plane) is the 2D plane showing ℂ. The 

horizontal axis is called the real axis (consisting of all complex numbers 

of the form a  +  0 i ), whereas the vertical axis is called the imaginary 

axis (consisting of all complex numbers of the form 0  +  b i ). 

 

 

 

                     Imaginary axis 

 

                                                                                     Real axis 
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Definition: 

 

An Argand diagram (aka Wessel diagram) is a plot of one or more 

complex numbers in the Complex Plane.  

 

The above 2 concepts are sometimes used interchangeably, but 

technically there is a difference. 

 

Definition: 

 

The modulus of a complex number z   =   x  +   iy  is the distance of the 
complex number from the origin of the Complex Plane and defined as,  

 

r   ≡   z   
def

=   x   y+2 2  

 

Definition: 

 

The principal argument of a complex number z  is the angle in the interval 
( − π, π] from the positive x – axis to the ray joining the origin to z  and 
defined as,  

 

θ   ≡   arg z   
def

=   tan −1 y
x

 
 
 

 

 

 

                                                   y                                  z   =   x  +   iy 
                                                      
                   

                                                                 r 
 

                                                                θ  
                                                                                                x 
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The convention for the angle range is chosen randomly, another common 

one being (0, 2π]. We will use the one in the definition.    

 

Definition: 

 

An argument of a complex number z   =   x  +   iy, denoted by Arg z, is 
defined as,  

 

Arg z  
def

=   { +arg   2π  :z n   n ∈ ℤ }  

 

A complex number has infinitely many arguments, but obviously only 1 

principal argument. When asked for the ‘ argument ’ of a complex number, 

it almost always means the principal argument. 

 

Example 9 

 

Find the modulus and argument (in degrees) of z   =   3  +   4 i.  

 

The modulus is z   =  
2 23 4  + , i.e. z   =  5. The Argand diagram for 3  

+   4 i shows that it lies in the first quadrant. The argument is found by 

solving tan θ  =  4/3. The related angle is tan 1− (4/3)  =  53 · 1 ° to 1 d.p..  

So the principal argument is θ  =  53 · 1 °.        

 

Example 10 

 

Find the modulus and argument (in degrees, to 1 d.p., and radians, to 3 

s.f.) of z   =   −  3  −   4 i.  

 

The modulus is obviously r  =  5. A plot of −  3  −   4 i shows that it lies in 

the third quadrant. The related angle is 53 · 1 °. Hence, the principal 

argument is 180 °  −   53 · 1 °, i.e. θ  =  126 · 9 ° or 2 · 21 rads.    

 

Complex Loci 
 

Definition: 

 

A complex locus (plural: loci) is a subset of the complex plane. 

 

In English, a complex locus is the set of all complex numbers satisfying a 

given condition. The following examples should clarify this.  
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Example 11 

 

Describe the locus of points z   =   x  +   iy  in the Complex Plane 

satisfying z   =  8.  

 

Putting z   =   x  +   iy  into the condition z   =  8 gives, 

 

x   y+2 2    =   8   

 

       
2 2x   y+   =   8 2

   

 

This is the equation of a circle with centre the origin and radius 8. Hence, 

the locus is the set of all points on the circle with centre (0, 0) and radius 

8. 

 

Example 12 

 

Describe the locus of points z   =   x  +   iy  in the Complex Plane 

satisfying z   <   5. 

 

Based on the analysis of Example 11, the locus is the set of all points 

inside the circle with centre (0, 0) and radius 5. 

 

 

 

                                                     y 
                                                          

                                              

 

                                                                  

                                                                             x 
 

 

 

 

 

 

 

 

 

5 
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Example 13 

 

Describe the locus of points z   =   x  +   iy  in the Complex Plane 

satisfying 

z   >   7. 

 

The locus is the set of all points outside the circle with centre (0, 0) and 

radius 7.  

 

Example 14 

 

Describe the locus of points z   =   x  +   iy  in the Complex Plane 

satisfying z     6 i− +   ≥   3. 

 

We have,  

 

 (   i )  6  ix y+ − +    ≥   3 

 

                                  (   6)  (   1) ix y− + +    ≥   3 

 

                                2 2(   6)   (   1)x y− + +    ≥   3 

 

                                           
2 2(   6)   (   1)x y− + +    ≥   3 2  

 

This locus is the set of all points on or outside the circle with centre  

(6, − 1) and radius 3.  

 

Example 15 

 

Describe the locus of points z   =   x  +   iy  in the Complex Plane 

satisfying z   3−   =  +z   4i . 

 

Putting z   =   x  +   iy  into the condition gives,  
 

  i   3x y+ −   =    i   4ix y+ +  

 

(   3)  ix y− +   =    i (   4)x y+ +  
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                          2 2(   3)   x y− +    =   
2 2  (   4)x y+ +  

 

                                   
2 2(   3)   x y− +    =   

2 2  (   4)x y+ +  

 
2x   −   6x  +   9  +   2y    =   

2x   +   2y   +   8y  +   16  

 

                                           −   6x  +   9   =   8y  +   16  

 

                             6x  +   8y  +   7   =   0 

 

Hence, the locus is the set of all points on the straight line 6x  +   8y  +   

7   =   0.  

 

Example 16 

 

Describe the locus of points z   =   x  +   iy  in the Complex Plane 

satisfying arg z   =   −
3π

4
.  

 

Complex numbers satisfying the stated condition have an argument of  

−
3π

4
. Hence, they lie in the third quadrant and satisfy,  

 

tan −1 y
x

 
 
 

   =   −
3π

4
 

 

                           
y
x

  =   tan 
3π

4
 

 
− 
 

 

 

       
y
x

  =   1 

 

       y  =  x 
 

Be careful. The locus is not the straight line y  =  x. The locus is the set 

of points on the straight line y  =  x  with x <  0 (make a sketch).   

 
 
 



Advanced Higher Notes (Unit 2)  Complex Numbers 

M Patel (April 2012) 13 St. Machar Academy 

 
 

Polar Form of a Complex Number 
 
The modulus and argument of a complex number can be used to write it in 

another form. From the diagram on page 8, x  = r cos θ  and y  = r sin θ.  
 

Definition: 

 

A complex number z   =   x  +   iy  is in polar form when it is written as,  

 

z   =   r (cos θ  +   i sin θ )   ≡   r cis θ 

 
Here, r  is the modulus of z  and θ  is the principal argument. Note that, 

with z  as above, the complex conjugate of z  is written in polar form as 

z   =   r (cos θ  −   i sin θ ).  
 

Any complex number can be changed from Cartesian form into polar from 

(and vice versa).  

 
Example 17 

 

Change z   =   3  +   3 i  into polar form.  

 

We need the modulus and principal argument. z   =  18   =  3 2 . z  lies in 

the first quadrant. θ  =  tan −1  1  =  
π

4
 rads. or 45 °.  Hence,  

 

z    =   3 2  cis 
π

4
  =  3 2  (cos 45 °  +   i sin 45 °)     

 

Example 18 

 

Change z   =   3  (cos π/6  +   i sin π/6)  into Cartesian form. 

 

We use x  = r cos θ  and y  = r sin θ.  Here, r  =  3  and θ  =  π/6. Hence, 

x  = 3  cos (π/6)  =  3/2  and y  = 3  sin (π/6)  =  3 /2. Hence,  

 

             z   =   
3

2
  +   

3

2
 i       
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Writing complex numbers in polar form makes multiplying and dividing 

them a lot easier. 

 

Theorem: 

 

Given 2 complex numbers z  and w  in polar form, the following hold,  

 

zw   =  z  w      ,     Arg zw   =   Arg z   +   Arg w 

 

‘ Multiply the moduli and add the arguments ’ is a nice wee way of 

remembering these results.  

 

Example 19 

 

Simplify z w  where z   =  7  (cos 45 °  +   i sin 45 °) and w  =   (cos 135 °  
+   i sin 135 °). 
 

                              z w   =   7  ×  1 . cis (45  +   135) °  

 

                                      =   7  cis 180 ° 

 

                                      =   7  ( − 1  +   0 i) 

 

                                      =   − 7  

 

As is evident, the shorthand polar form notation is very handy. 

 

Theorem: 

 

Given 2 complex numbers z  and w  in polar form, the following hold,  

 

z
w

  =  

z

w
     ,     Arg 

z
w

   =   Arg z   −   Arg w 

 

‘ Divide the moduli and subtract the arguments ’ is a way of remembering 

these results.  
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Example 20 

 

Simplify z   ÷   w  where z   =   2  cis 
π

4
  and w   =   2 cis 3π. 

 

z  ÷  w   =  
2

2
  cis   

π
3π

4

 
− 

 
 

 

         =  
1

2
  cis 

11π

4
 

 
− 
 

 

 

As 
11π

4
 −  is not in the required range for a principal argument (it is too 

negative), we must add multiples of 2π to it to get it in ( − π, π]. As 
11π

4
 −  

is slightly bigger than − 3π, add 2π, which is the same as 
8π

4
, to get,   

 

                                   z    ÷   w    =   
1

2
  cis 

3π

4
 

 
− 
 

 

 

                               =   
1

2
  

1 1
    i

2 2

 
− − 
 

 

 

             =    
1 1

    i
2 2

− −  

 

Powers and de Moivre’s Theorem 
 

Theorem (de Moivre’s Theorem): 

 

Given a complex number z  =  r (cos θ  +   i sin θ ), then for k ∈  ℝ, 

 
kz  =  

kr  (cos kθ  +   i sin kθ ) 

 
De Moivre’s Theorem makes taking powers of complex numbers much 

easier than the traditional approach (expanding brackets). It is a very 

powerful (pun intended) theorem. 
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Example 21 

 

Express (1  +   i) 19  in Cartesian form. 

 

In polar form, 1  +   i becomes 2  cis 
π

4
. Hence,  

 

(1  +   i) 19   =  

19
π

2 cis 
4

 
 
 

     

 

Using de Moivre’s Theorem this becomes,  

 

    (1  +   i) 19   =  ( )
19

2  cis 
19π

4
 

 

                          =   
92 2  cis 

19π

4
 

 

                           =   512 2  cis 
19π

4
 

 

                          =   512 2  cis 
3π

4
 

 

                                             =   512 2  
1 1

    i
2 2

 
− + 
 

 

 

                          =   −  512  +   512 i 

 

Trigonometric Identities 
 
A funky application of de Moivre’s Theorem occurs in deriving 

trigonometric identities by using the Binomial Theorem.  

 

It is to be noted that the Binomial Theorem applies to complex numbers. 

 
Example 22 

 
Derive the double angle formulae for sine and cosine. 
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The idea is to write (cos θ  +   i sin θ ) 2  in 2 ways. On the one hand, de 

Moivre’s Theorem states that,  

 

             (cos θ  +   i sin θ ) 2   =   cos 2θ  +   i sin 2θ  
 
On the other hand, the Binomial Theorem says that,  

 

(cos θ  +   i sin θ )2   =   cos2θ  +   2i cos θ sin θ  −   sin 2θ 
 

    (cos θ  +   i sin θ )2   =   cos 2θ  −   sin 2θ  +   (2 sin θ cos θ ) i 
 

Equating these 2 expressions for (cos θ  +   i sin θ )2  gives,  

 

    cos 2θ  +   i sin 2θ   =   cos 2θ  −   sin 2θ  +   (2 sin θ cos θ ) i 
 

Equating real and imaginary parts gives,  

 

                                cos 2θ   =   cos2θ  −   sin2θ 
 

                                 sin 2θ   =  2 sin θ cos θ   
       
Example 23 

 
Express cos 3θ  in terms of powers of cos θ.   
 

By de Moivre’s Theorem,  

 

              (cos θ  +   i sin θ )3   =   cos 3θ  +   i sin 3θ 
 

By the Binomial Theorem, this also equals (after simplification), 

 

cos 3θ   −   3 cos θ sin 2θ    +   3i cos2θ sin θ  −   i sin 3θ 
 

Equating real parts gives,  

 

      cos 3θ   =   cos3θ   −   3 cos θ sin2θ   

 

The Pythagorean identity then gives,  

 

                   cos 3θ   =   cos 3θ   −   3 cos θ (1  −   cos 2θ ) 
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                cos 3θ   =   cos 3θ   −   3 cos θ  +   3 cos 3θ   
 

cos 3θ   =   4 cos3θ   −   3 cos θ  
 

The n th Roots of any Complex Number 
 

As de Moivre’s Theorem holds for fractional powers as well, this makes it 

a useful tool for taking roots. 

 

Solving z n = w 
 

Theorem (n th Roots Theorem): 

 

Given w  =  r (cos θ  +   i sin θ ), then the n  solutions of the equation  
nz  =  w  are given by, 

 

kz  =  

1
nr

  2π   2π
cos   sin 

θ k θ k
n n

    + +
+    

    
 

 

(k  =  0, 1, 2,… , n −  1) 

 

The following examples will illustrate how to use this horrible formula. 

 

Example 24 

 

Find the fourth roots of 4  +   4 i. 

 

We translate the problem so that the theorem can be used. Letting w  =  

2  +   2 i, the problem is now to solve 4z   =   w. Writing w  in polar form 

gives (check !), 

 

                                      4z   =   4 2  cis 
π

4
   

 

By the theorem,  

 

                kz   =   

1 1
4 84  2  cis 

π 4  2π

4

/ k +
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                                       kz   =   

5
82  cis 

π (8   1)

16

k +
 
 

    (k  =  0, 1, 2 and 3) 

 
So,  

 

                                       
0

z   =   

5
82  cis 

π

16
 

 

                                        
1

z   =   

5
82  cis 

9π

16
 

 

                                       
2

z   =   

5
82  cis 

17π

16
 

 

                                       
3

z   =   

5
82  cis 

25π

16
 

 

As 
2

z  and 
3

z  are not in (− π, π], we must take away multiples of 2π from 

the arguments given above to get, 

 

                                       
0

z   =   

5
82  cis 

π

16
 

 

                                        
1

z   =   

5
82  cis 

9π

16
 

 

                                       
2

z   =   

5
82  cis 

15π

16
 

 
− 
 

 

 

                                       
3

z   =   

5
82  cis 

7π

16
 

 
− 
 

 

 

These are the roots of 4  +   4 i. Don’t expect a horrible formula to give 

unhorrible answers. 

 

There is a geometric interpretation to the problem of finding n th roots 
of a complex number. The next example will demonstrate this. 
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Example 25 

 

Solve 3z   =   8 i. 

 

In polar form, 8 i  =  8 cis 
π

2
. Hence,  

 

     kz   =   2 cis 
π 2  2π

3

/ k +
 
 

 

 

                                    kz   =   2 cis 
π (4   1)

6

k +
 
 

           (k  =  0, 1 and 2)  

 

Check that the solutions are,  

                                 

                                       
0

z   =   3   +   i 

 

                                        
1

z   =   −  3   +   i 

 
                                       

2
z   =   − 2 i  

 

Now plot these solutions on an Argand diagram. 

 

                                    
1

z              y                    
0

z  

                                                                         

                                              

 

                                                                  

                                                                             x 
 

 
                                         

2
z  

 

 

As all the solutions have the same modulus, they lie on a circle with 

centre (0, 0) and radius 2 . The angle between any 2 of the lines (loosely 

referred to as the ‘ angle between the solutions ’) is 2π/3 radians. This 

situation is a specific case of a more general phenomenon. 
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Theorem: 

 

The n  solutions of nz  =  w  lie on a circle with radius 
1
nw  and are equally 

spaced, the angle between any 2 successive roots being 2π/n  radians.    

 

The problem given near the start of this topic can now be solved. It is 

easy to see that the cube roots of i are 
3 1
   i

2 2
+ , 

3 1
    i
2 2

− +  and −  i. 

Taking each of these roots and substituting them into the formula on 

page 1 gives the 3 real solutions of x 3  −  x  =  0. We have come full circle 

(no pun intended).    

 

Notice that the sum of all the solutions of nz  =  w  add up to 0. This is no 

coincidence, especially by remembering the vector interpretation of 

complex numbers.   

 

Theorem: 

 

The n th roots of nz  =  w  sum to 0. 

 

Roots of Unity 
 
The solution to the problem nz  =  1  is called finding the n th roots of 
unity. The special case of the last theorem for roots of unity is often 

stated separately. 
 

Theorem: 

 

The n th roots of unity (n  >  1) satisfy, 
 

n

k

k

z
1

  0

 

−

=

∑  =  0 

 

Example 26 

 

Find the 6th roots of unity.  

 

To solve 6z  =  1, we use the n th Roots Theorem, noting that 1  =  cis 0,     
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                                   kz   =   cis 
π

3

k 
 
 

           (k  =  0, 1, 2, 3, 4 and 5) 

 

Thus,  

 

                                        
0

z   =  1 

 

                                         
1

z   =  
1 3
   i

2 2
+  

 

                                        
2

z   =  
1 3

    i
2 2

− +  

 

                                        
3

z   =  −  1 

 

                                        
4

z   =  
1 3

    i
2 2

− −  

 

                                        
5

z   =  
1 3
   i

2 2
−  

 

Notice that the roots occur in conjugate pairs (
0

z  and 
3

z ,
1

z  and 
5

z , 
2

z  

and 
4

z ).   

 

Solving Polynomials 
 

The true power of complex numbers stems from the fact that they can 

be used to solve any polynomial equation.  

 

Definition: 

 

A repeated root (occurring m  times) of a polynomial p  is called a root of 
multiplicity m. 

 

The next theorem is one of the most important results in mathematics. 

 

Theorem (Fundamental Theorem of Algebra): 

 

Every non-constant polynomial with complex coefficients has at least one 

complex root. 
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Compare this theorem with the case of polynomials with only real 

coefficients; many quadratics can’t be solved using real numbers. The 

Fundamental Theorem of Algebra implies the following result. 

 

Corollary: 

 

Every polynomial of degree n  (≥  1) with complex coefficients has exactly 

n  complex roots (including multiplicities). 

 

Theorem: 

 

A polynomial p  of degree at least 1 with complex coefficients can be 

factorised into a product of n  linear factors, 
 

p (z)   =   

n

r

r

z z
  1

 (   )
=

−∏  

 

Theorem: 

 

If a polynomial p  of degree n  with all coefficients real has a non-real 

root, then the conjugate of this root is also a root of p. 

 

Theorem: 

 

A polynomial of degree n  with all coefficients real can be factorised into 

a product of real linear factors and real irreducible quadratic factors, 
 

p (z)   =   

t

r

r

z d
  1

 (   )

=

−∏   ×   

(   )/2

2

s  1

 (     )

n t

s s sa z b z c

−

=

+ +∏  

 

where the second product only exists if n  >   t. 

 

Cubic with 2 Complex Roots and 1 Real Root  
 

Example 27 

 

Given that z  =  3 is a root p (z)  =   3z   −   3 2z   +   4z  −   12, find the 

other roots of p.  
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As z  =  3 is a root, (z  −   3) is a factor of p. Dividing p  by (z  −   3) gives 

(check !),  

p (z)   =   (z  −   3) ( 2z   +   4)  

 

In the language of the last theorem, n =  3, t  =  1 (and hence r   =   1 

only), 
1

d   =  3, s  =  1 only, 
1

a  =  1, 
1

b  =  1 and 
1

c  =  4. The roots of p  are 

obtained by solving (z  −   3) ( 2z   +   4)  =   0; hence, z  −   3  =   0 and 2z   

+   4  =   0, which implies z  =  3 (which we already know about) and z  =   

±  2 i. Thus, p  has roots z  =  3 and z  =   ±  2 i.   

  

Cubic with 3 Real Roots 
 

Example 28 

 

Factorise 3z   −   8 2z   +   11z  +   20 in to a product of 3 linear factors.  

 

It can be checked that z  =  −  1 is a solution of 3z   −   8 2z   +   11z  +   

20  =   0. Hence, (z  +   1) is a factor of the cubic. Long division yields, 

 
3z   −   8 2z   +   11z  +   20  =   (z  +   1) ( 2z   −   9z  +   20) 

 

The quadratic can be easily factorised, or, if that is too much for your 

brain to handle, use the Quadratic Formula to get the roots (and hence 

the factors), into 2z   −   9z  +   20  =   (z  −   4) (z  −   5). Hence,  

 
3z   −   8 2z   +   11z  +   20  =   (z  +   1) (z  −   4) (z  −   5) 

 

In terms of the last theorem, n  =  3, t  =  3 (and r  ranges from 1 to 3), 

1
d   =  −  1, 

2
d   =  4 and 

3
d   =  5 (there are no irreducible quadratic 

factors, as can be deduced from the fact that n  =  t ).     
 

Quartic with 4 Complex Roots 
 
Example 29 
 

Given that z  =   2  +   3 i  is a root of the quartic  p (z)   =   4z   −   6 3z   

+   23 2z   −   34z  +   26, find the other 3 roots of p  and express p  as (i) 
a product of complex linear factors (ii) a product of real irreducible 

quadratic factors. 
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As p  has all coefficients real, the conjugate z   =   2  −   3 i  is also a 

root. Hence, z  −   (2  +   3 i)  and z  −   (2  −   3 i) are factors of p; thus, 
(z  −   (2  +   3 i)) (z  −   (2  −   3 i))  =   2z   −   4z  +   13  is also a factor 

of p. To find the other roots, divide this quadratic factor into p (the long 
division process also works for quadratic factors), 

 

                                                         2z   −     2z  +     2 
2z   −   4z  +   13  4z   −   6 3z   +   23 2z   −   34z  +   26 

                            4z   −   4 3z   +   13 2z  

              

                                   −   2 3z   +   10 2z   −   34z  +   26 

                                   −   2 3z   +    8 2z   −   26z   
 

                                                      2 2z   −      8z  +   26 

                                                      2 2z   −      8z  +   26 

 

                                                                                   0 

 

As the remainder is 0, we have that 2z  −   2z  +   2 is a factor of p. 
Hence, the roots of p  are given by, 
 

( 2z   −   4z  +   13) ( 2z   −     2z  +     2)  =   0 

 

Putting the first factor equal to zero gives us the roots we know about. 

Putting the second factor equal to zero and using the quadratic formula 

gives z  =   1  ±   i. Hence, the roots of p  are z  =   2  ±   3 i and z  =   1  ±   

i.   

 

For part (i),  

 

p (z)   =   (z  −   (2  +   3 i))(z  −   (2  −   3 i))(z  −   (1  +   i))(z  −   (1  −   i)) 

 

For part (ii),  

 

p (z)   =   ( 2z   −   4z  +   13) ( 2z   −    2z   +    2) 
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Quartic with 2 Complex Roots and 2 Real Roots 
 
Example 30 

 
Verify that z  =   1  +   3 i  is a root of p (z)   =   4z   −   2 3z   +   9 2z   +   

2z  −   10 and find all the other roots.  

 

Substituting z  =   1  +   3 i  into p (z)  gives,  
 

 p (1  +   3 i)  =   (1  +   3 i) 4   −   2 (1  +   3 i)3   +   9 (1  +   3 i) 2   

                          +   2 (1  +   3 i)  −   10 

 

We need to work out (1  +   3 i) 2 , (1  +   3 i) 3  and (1  +   3 i) 4 . We have 

(check !),  

 

(1  +   3 i) 2   =   −  8  +   6 i 

 

   (1  +   3 i)3   =   −  26  −   18 i 

 

(1  +   3 i) 4   =   28  −   96 i 

 

Thus,  

 

 p (1  +   3 i)  =   28  −   96 i  −   2 (−  26  −   18 i)  +   9 (−  8  +   6 i)  

                          +   (2  +   6 i)  −   10 

 

                     =   28  −   96 i  +   52  +   36 i  −   72  +   54 i  

                          +   2  +   6 i  −   10  

 

                     =   (28  +   52  −   72  −   8)  +   (−   96  +   36  +   54  +   6) 

i   

 

                     =   0 

 

Hence, as p (1  +   3 i)  =   0, z  =   1  +   3 i  is a root of p. As p  has all 

coefficients real, z   =   1  −   3 i  is also a root. Hence, z  −   (1  +   3 i)  

and z  −   (1  −   3 i) are factors of p; thus, (z  −   (1  +   3 i)) (z  −   (1  −   3 

i))  =   2z   −   2z  +   10 is also a factor of p. Long dividing p  by 2z   −   2z  
+   10 gives,  
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 p (z)   =   ( 2z   −    2z   +    10) ( 2z   −    1) 

 

Solving p (z)   =  0 gives z  =   1  ±   3 i and z  =   ±   1.   

 

Quartic with 4 Real Roots 
 

Example 31 

 
Show that 4z   −   8 3z   +   17 2z   +   2z  −   24  can be written in the form 

(z  +   1) (z  −   2) (z  −   3) (z  −   4). 

 

Performing synthetic division on the polynomial gives,  

 
4z   −   8 3z   +   17 2z   +   2z  −   24 =  (z  +   1)( 3z   −   8 2z   +   11z  +  

20) 

 

Performing synthetic division on the cubic gives,  

 

 3z   −   8 2z   +   11z  +  20  =   (z  −   2) ( 2z   −   7z  +  12) 

 

Factorising the quadratic gives,  

 

  2z   −   7z  +  12  =   (z  −   3) (z  −   4)   

 

Putting these 3 pieces of information together gives, 

 
4z   −   8 3z   +   17 2z   +   2z  −   24  =  (z  +   1) (z  −   2) (z  −   3) (z  −   

4) 

  

Examples 27, 29 and 30 are the most likely cases that you will encounter 

in this course (as they are ones that involve complex numbers !); the 

other 2 examples are given for the sake of completeness. 
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