
Advanced Higher Notes (Unit 2)  Further Differentiation and Applications 

M Patel (April 2012) 1 St. Machar Academy 

Further Differentiation and Applications 
 

Prerequisites: Inverse function property; product, quotient and chain            

                       rules; inflexion points.  

 

Maths Applications: Concavity; differentiability. 

 

Real-World Applications: Particle motion; optimisation.  

  

Derivative of Inverse Functions 
 

Given a function f, the derivative of its inverse f 1−  can be found.  

 

Theorem: 

 

Given a function f, the derivative of f 1−  is given by, 

 

D (f 1− )   =  

Df f 1

1

( ) −
�

 

 

In Leibniz notation, this formula takes on a much more memorable form, 

remembering that if y  =  f (x) then x  =  f 1−  (y),  
 

dx
dy

  =  

dy
dx

1

 
 
 

 

 

An example will be given (using both formulae) to show how the theorem 

is used.  

 

Example 1  

 

Obtain the derivative of the function defined by y  =  f (x)  =  
2x . Taking 

the positive root allows us to define an inverse function given by, f 1−  (x) 

=  

1
2

x . Note that Df   =   2x. Hence,  
 

D (f 1− )   =  
1
2

1

2x
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Note that differentiating the inverse directly gives the same answer. 

Using the Leibniz formula instead, recalling that x  =  f 1−  (y)  =  
1
2

y , 

 

dx
dy

  =  
d
dy

 x 

 

                                                          
dx
dy

  =   
d
dy

1
2

y  

 

  
dx
dy

  =  
1
2

1

2y
 

 

This is the same answer as above (the inverse function used here has 

variable y, so interchanging x  and y  gives the same result).  
 

On the other hand,  

 

                                            
dy
dx

1

 
 
 

  =   
1

2x
  

 

                                            
dy
dx

1

 
 
 

  =  
1
2

1

2y
 

 

Derivatives of Inverse Trigonometric Functions 
 

The derivatives of arcsine, arccosine and arctangent can be found using 

the above formula. 

 

• 
d
dx

 sin 1− x  =  

  x 2

1

1 −
 

 

• 
d
dx

 cos 1− x  =  −  

  x 2

1

1 −
 

 

• 
d
dx

 tan 1− x  =  

  x 2

1

1 +
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Example 2 

 

Differentiate y   =  
1cos− (3x).  

 

By the chain rule,  

 

dy
dx

 =  −  
2

1

1 (3 )  x−
  ×  

d
dx

(3x)   

 

                             
dy
dx

  =  −  
2

3

1 9  x−
  

 

Example 3 

 

Differentiate y   =  
1sin− ( 3x ). 

 

                                  
dy
dx

  =  
3 2

1

1 ( )  x−
 ×  

d
dx

( 3x ) 

 

                                  
dy
dx

  =  

2

6

3

1

x

  x−
  

 

Example 4 

 

Differentiate y   =  
1tan− 2  x+ .  

 

         
dy
dx

  =  
1

1 (2 )    x+ +
 ×  

d
dx

2  x+  

 

                                  
dy
dx

  =  

1

3  x+
 ×   

1

2 2  x+
 

 

                                  
dy
dx

  =  
1

2(3 ) 2  x   x+ +
 

 
Often in this course, answers to derivatives will be freakishly complex 

looking, as in Example 4. Don’t let this convince you that the answer is 

wrong. Just follow the rules and get an answer. 

   



Advanced Higher Notes (Unit 2)  Further Differentiation and Applications 

M Patel (April 2012) 4 St. Machar Academy 

Implicit Differentiation 
 

Implicit and Explicit Functions 
 

Definition: 

 

A function f  is given explicitly (f  is an explicit function) if the output 
value y  is given in terms of the input value. 

 
An explicit function is recognised when y  is given as a function of x.  
 

Definition: 

 

A function f  is given implicitly (f  is an implicit function) if the output 

value y  is not given in terms of the input value. 

 

An implicit function is usually identified when the variables x  and y  are 
mixed up in a higgledy-piggledy manner.  

 

An implicitly defined function may or may not be solved for y.  
 

Example 5 

 

xy  =  1 defines y  implicitly as a function of x. However, for x ≠  0, it can 

be written explicitly as y  =  
1

x
. 

 

Example 6 

 

The function 2 2y    −    3xy   −    8 sin y   +   
2x    =    5 defines y  implicitly 

as a function of x ; the expression on the LHS is so higgledy-piggledy in x  
and y, that y  cannot be written explicitly as a function of x.    
 

First Derivatives of Implicit Functions  
 

To find 
dy
dx

 for an implicitly defined function, differentiate both sides of 

the equality with respect to x and solve the resulting equation for 
dy
dx

. 
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The chain rule will most likely be used and sometimes the product or 

quotient rule too. Just remember that y  is a function of x.     
 
Example 7 

 

Find 
dy
dx

 for the function defined implicitly by the equation 2x   +   
3xy   =  

15.  

 

First, write down what the intent is, 

 

                                
d
dx

( )2 3    x xy+   =  

d
dx

15 

 

When there is a lonely constant on one side of the equation, it can be very 

easy to forget to differentiate it; so differentiate it first. Next, 

remember that y  is a function of x, so the second term on the LHS needs 
an application of the product rule, 

 

                   2x  +   
3 2    3

dy
y xy

dx

 
+ 

 
  =  0 

 

Solving this equation for the derivative gives,  

 

                    
dy
dx

  =  −  

( )3
2

2   

3

x y

xy

+
 

 

Example 8 

 

Find 
dy
dx

 when 26y   +   2xy  −   
2x   =  3. 

 

                      
d
dx

(6 2y  +   2xy  −   
2x )   =   

d
dx

3 

 

      12y  
dy
dx

  +   2      
dy

y x
dx

 
+ 

 
  −   2x   =   0 

 

                                   (12y  +   2x) 
dy
dx

  =   2x   −   2y 
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dy
dx

  =  

2   2

12   2

x y
y x

−

+
 

 

                   
dy
dx

  =  

  

6   

x y
y x

−

+
 

 

Functions defined implicitly by equations that look a little more menacing 

are still no match for implicit differentiation. 

 

Example 9 

 

Find 
dy
dx

 when 22y    −    3xy   −    8 sin y   +   
2x    =    4.  

 

                  
d
dx

( 22y    −    3xy   −    8 sin y   +   
2x )  =  

d
dx

4 

 

 4y  
dy
dx

  −   3      
dy

y x
dx

 
+ 

 
  −   8 cos y  

dy
dx

 +   2x  =  0 

 

                                    (4y  −   3x  −   8 cos y) 
dy
dx

  =   3y   −   2x 

 

                                                                   
dy
dx

  =  

3   2

4   3   8 cos y

y x
y x

−

− −
 

 

Example 10 

 

Find 
dy
dx

 when sin x  ln (xy)  +   
2x y  =  7. 

 

    
d
dx

(sin x ln (xy)  +   
2x y)  =  

d
dx

7 

 

     sin x  

1 dy
y dx

 
 
 

  +   
2x
dy
dx

  =  −   cos x ln (xy)  −   2xy  −   

1

x
 sin x  

 

       x sin x 

dy
dx

  +   
3x y 

dy
dx

  =  −   xy cos x ln (xy)  −   2 2x 2y   −   y sin x  
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           (x sin x  +   
3x y) 

dy
dx

  =  −   xy cos x ln (xy)  −   2 2x 2y   −   y sin x   

 

                                      
dy
dx

  =   −

2 2

3

( cos   ln  ( )  2   sin  )

sin    

xy x xy x y y x

x x x y

+ +

+
  

 

Second Derivatives of Implicit Functions  
 
The second derivative can also be found using implicit differentiation. 

The idea is to differentiate a line of working that is used in finding the 

first derivative.  

 
Example 11 

 

Find 
dy
dx

 and 
2

2

d y

dx
 when xy   −    x    =    4. 

 

Differentiating implicitly we get,  

 

                            y  +   x 
dy
dx

  −   1  =   0 

 
From this we get,  

 

 
dy
dx

  =  

1  y
x
−

 

 

Differentiate implicitly the line of working to get,  

 

                
dy
dx

  +   

2

2
  

dy d y
x

dx dx

 
+  

 
  =   0 

 

                                          x 
2

2

d y

dx
  =  −  2 

dy
dx

   

 

                                          x 
2

2

d y

dx
  =  −  2 

1  y
x

 −
 
 
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2

2

d y

dx
  =   

2

2 (   1)y

x

−
 

 

Logarithmic Differentiation 
 

Another technique to add to our arsenal of differentiating functions 

involves taking natural logarithms of both sides of an equation before 

differentiating. This technique is known as logarithmic differentiation. 

Logarithmic differentiation should be used when any one of the following 

indicators are present. 

 

• Bracketed terms with fractional powers. 

 

• Variable is in the power. 

 

• Product or quotient of more than 2 functions. 

 

Example 12 

 

Differentiate y   =   

2 3
3 2

3
4

(3   2) (1  2 )

(4   7)

x x

x

− −

+

. 

 

Taking natural logarithms of both sides and using the ‘ power comes down ’ 

rule for logarithms gives, 

 

          ln y   =   

2

3
 ln (3x  −   2)  +   

3

2
 ln (1  −   2x)  −   

3

4
 ln (4x  +   7)    

 

This is much friendlier to differentiate. Differentiating and simplifying 

each term on the RHS gives,  

 

       
1

y
dy
dx

  =  

2

3   2x −
  −   

3

1  2x−
  −   

3

4   7x +
     

 
 

           
dy
dx

  =  y 
2 3 3

    
3   2 1  2 4   7x x x
 

− − 
− − + 

  

 
Remembering what y  actually is gives,  
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dy
dx

  =  

2 3
3 2

3
4

(3   2) (1  2 )

(4   7)

x x

x

− −

+

  
2 3 3

    
3   2 1  2 4   7x x x
 

− − 
− − + 

 

 

Example 13 

 

Differentiate y   =   x 3xe −
 cos x. 

 

Taking natural logarithms gives,  

 

          ln y   =   ln x   +    ln ( 3xe − )   +    ln (cos x)    
 

ln y   =   ln x   −   3x   +    ln (cos x)    
 

Differentiating gives (notice that term on the LHS cropping up again),   

 

                            
1

y
dy
dx

  =  

1

x
  −   3  +   

( sin  )

cos  

x
x

−
 

 

                                
dy
dx

  =  y 
1
  3  tan x

x
 

− − 
 

 

 

         
dy
dx

  =  x 3xe −
 cos x 

1
  3  tan x

x
 

− − 
 

 

 

                           
dy
dx

  =  
3xe −

 cos x  −   3x 3xe −
 cos x  −   x 3xe −

 sin x     

 

Example 14 

 

Differentiate y   =   
sin  xx . 

 

Taking natural logarithms gives,  

 

                                ln y   =   sin x . ln x 
 

Differentiating (using the product rule) gives, 

 

                            
1

y
dy
dx

  =  cos x . ln x  +   sin x  . 
1

x
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dy
dx

  =  y (cos x . ln x  +   
1x − sin x) 

 

        
dy
dx

  =  
sin  xx (cos x . ln x  +   

1x − sin x) 

 

Parametric Differentiation 
 

It is possible to write a function y  =  f (x)  differently as 2 functions of a 

common variable. This sometimes makes it easier to work out 
dy
dx

.      

 

Parametric Functions 
 

Definition: 

 

A curve is defined parametrically if it can be described by functions x 
and y, called parametric functions (aka parametric equations of the 

curve), of a common variable known as the parameter. 

 

Normally, the parameter is denoted by t  or θ, and the parametric 
functions x and y  are thus written as x (t)  and y (t)  or  x (θ)  and y (θ). 
It often helps to think of the parameter as time; as the value of t  
changes, a curve is generated in the x – y plane. Think of an ant walking 
about in the x – y plane; for each value of t, it has a certain position (i.e. 
coordinate) in the plane given by (x (t), y (t) ). Sometimes the curve is a 
function, but it can be any type of ‘ shape ’ in the plane (for example, a 

circle). Many ‘ shapes ’ are often easier to describe implicitly. 

 
Example 15 

 

Show that the point (0, − 1) lies on the curve described by the parametric 

equations x  =  cos θ, y  =  sin θ (θ  ∈ [0, 2π]), stating the value of θ.  
 

Note that 2x   +   
2y   =  1, i.e. the parametric equations define a circle 

with centre (0, 0) and radius 1. The point (0, 1− ) clearly lies on this circle 

and the angle is obviously 3π/2. Another way to see this is to put x  =  0 

and y  =  − 1  into the parametric equations and show that there is only 
one value of θ that satisfies both equations. Indeed, 0  =  cos θ  leads to 
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θ  =  π/2 or 3π/2, whereas − 1  =  sin θ  leads to θ  =  3π/2. So, there is a 

common value that satisfies both equations and it is θ  =  3π/2.     

 

Example 16 

 

Show that the point (2, 5) does not lie on the curve defined  

parametrically by x  =  2t, y  =  4 2t .   

 

If the given point did lie on the curve, then 2  =  2t  ⇒  t  =  1. However, t  
=  1 gives y  =  4, not 5. Thus, (2, 5) does not lie on the curve. 

 

First Derivatives of Parametric Functions  
 

Theorem: 

 

Given 2 parametric functions x (t)  and y (t), the derivative of y  with 
respect to x is given by,  
 

dy
dx

  =   

dy
dt

   ÷   

dx
dt

 

 

In Newton Notation, this is written as,  

 

dy
dx

   =   

y
x

�

�
 

 

Example 17 

 

Find 
dy
dx

 when x  =  2 2t , y  =  ln t.   

 

The derivatives with respect to t  are x�   =  4t and y�   =  

1

t
. Hence, 

 

dy
dx

   =  

y
x

�

�
 

 

    

dy
dx

   =  

1 /

4

t
t
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dy
dx

   =  
2

1

4t
 

 

Example 18 

 

Find the equation of the tangent line to the curve at t  =  2 defined 

parametrically by the equations x  =  
21  

t
t−
, y  =  

2

2

1  

1  

t

t

+

−
. 

 
The derivatives are,  

 

dx
dt

  =  

2

2 2

1  

(1  )

t

t

+

−
   ,   

dy
dt

  =  

2

2 2

4 (1  )

(1  )

t t

t

−

−
 

 

Hence,  

 

  

dy
dx

   =  

dy
dt

   ÷   

dx
dt

 

 

   

dy
dx

  =  

2

2

4 (1  )

1  

t t

t

−

+
 

 

At t  =  2, x  = −
2

3
, y  = −

5

3
and 

dy
dx

  =  −
24

5
. Hence, the equation of the 

tangent line is,  

 

 y  +   
5

3
  =  −

24

5

2
  

3
x
 

+ 
 

 

 

After a wee bit of simplifying, this becomes,   
 

                    72x  +   15y  +   73  =   0 
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Second Derivatives of Parametric Functions  
 

Theorem: 

 

Given 2 parametric functions x (t)  and y (t), the second derivative of y 
with respect to x  is given by,  
 

d y

dx

2

2
   =   

yd
dt x

 
 
 

�

�
  ×   

x
1
�

 

Evaluating this leads to,  

 

d y

dx

2

2
   =   

−� ���� �

�3

    x y y x

x
 

 
Example 19 

 

Find 
d y

dx

2

2
 when x  =  3  +   3t  and y  =  4  −   4 2t .  

 

If using the second form, calculate the relevant quantities first. So,  

x�   = 3, x��  =  0, y�   =  −8t  and y��  =  −8. Then use the formula,  

 

    

d y

dx

2

2
   =   

−� ���� �

�3

    x y y x

x
 

 

                                                   

d y

dx

2

2
   =   

3

3.( 8)  ( 8 ).0

3

t− − −
 

 

                                                   

d y

dx

2

2
   =   −

24

27
 

 

                                                   

d y

dx

2

2
   =   −

8

9
 

 

Example 20 

 

Show that the curve defined parametrically by the equations x  =  t  −   

2

1

t
  and y  =  t  +   

2

1

t
 has no point of inflexion. 
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First note that t  ≠  0. If there is a P of I, then either 
d y

dx

2

2
 does not 

exist or it is obtained by solving 
d y

dx

2

2
  =  0. To obtain the second 

derivative, use the first form (it’s easier) to get,  

 

d y

dx

2

2
  =  

6

4 3

4

(   1)

t

t +
   

 

Solving this for t  gives t  =  0. But this contradicts the fact that t  ≠  0. 

Alternatively, since t  ≠  0, the equation 
d y

dx

2

2
  =  0 has no solutions for t. 

Either way, there is no P of I.     

 

Planar Motion 
 

Motion in a plane is often best described by parametric equations. The 

following definitions extend the 1D definitions from Unit 1 to 2D. 

 

 Definition: 

 

Planar motion is motion in a plane and is described by 2 functions of time 

x (t)  and y (t).  

 

Definition: 

 

The displacement of a particle at time t  in a plane is described by the 
displacement vector,  

 

s (t)  
def

=   (x (t), y (t) )  =   x (t)  i   +   y (t)  j 
 

The magnitude of displacement, aka distance (from the origin), at time 

t  is,  
 

 (t)s   
def

=   x   y2 2
+  

 

The direction measured from the x – axis (aka direction of 

displacement), θ, at any instant of time t  is,  
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tan θ    =    

y  
x  

 

 

where θ  is the angle between x i and s. 

 

Definition: 

 

The velocity of a particle at time t  in a plane is described by the velocity 
vector,  

 

v (t)   
def

=    

d
dt
s
  =  (x� (t),y� (t) )  =   x� (t)  i   +   y� (t)  j 

 

The magnitude of velocity, aka speed, at time t, is,  
  

 (t)v   
def

=   x   y2 2
+� �  

 

The direction of motion (aka direction of velocity), η, at any instant of 
time t  is,  
 

tan η    =    

y  
x  

�

�
 

 

where η  is the angle between x�  i and v. 

 

Definition: 

 

The acceleration of a particle at time t  in a plane is described by the 
acceleration vector,  

 

a (t)   
def

=    

d
dt
v
  =  (x�� (t),y��(t) )  =   x�� (t)  i   +   y��(t)  j 

 

The magnitude of acceleration, at time t, is,  
  

 (t)a   
def

=  x   y2 2
+�� ��  

 

The direction of acceleration, ψ, at any instant of time t, is,  
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tan ψ    =    

y  
x  

��

��
 

 

where ψ  is the angle between x��  i and a. 

 

Example 21 

 

Find the magnitude and direction of the displacement, velocity and 

acceleration at time t  =  2 of the particle whose equations of motion are 

x  =  3t   −   2t  and y  =  2t   +   4t . 
 

We deal first with the displacement. x (2)  =  4 and y (2)  =  12. Hence, 

the magnitude of displacement is 16 144  +   =  160   =  4 10  metres. 

The direction is found by solving tan θ    =    3, which gives  71 · 6 °. 

 

The velocity components are given by x�   =  3 2t   −   2 and y�   =  2t  +   4. 

So, x� (2)  =  10 and y� (2)  =  8. Hence, the magnitude of velocity is 

100 64  +    =   164    =  2 41  metres per second. The direction is 

found by solving tan η    =   4/5, which gives 38 · 7 °.    

 

The acceleration components are given by x��   =  6t  and y��   =  2. So, x�� (2)  

=  12 and y��(2)  =  2. Hence, the magnitude of acceleration is 144 4  +    

=   148    =  2 37  metres per second squared. The direction is found by 

solving tan ψ    =   1/6, which gives 9 · 5 °.    

 

Related Rates of Change 
 

Definition: 

 

A related rate of change refers to an equation involving derivatives, in 

particular, derivatives arising from y  as a function of x  and both x  and y  
as functions of a third variable u.    

 

Problems involving related rates of change arise naturally in real-life. To 

solve them requires use of the Chain Rule and occasionally the Leibniz 

relation 
dx
dy

  =  

dy
dx

1

 
 
 

. 
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Example 22 

 

If a spherical balloon is inflated at a constant rate of 240 cubic 

centimetres per second, find the rate at which the radius is increasing 

when the diameter is 16 cm.  

 

Something about a sphere, it’s diameter (and hence radius), rate of 

change of volume with respect to time and rate of change of radius with 

respect to time. Sounds like the volume of a sphere would be a good start.  

 

V   =  

4

3
π 3r  

 

Remember that V  and r  are secretly functions of time, t. Differentiate 
both sides w.r.t. t  to get,  
 

 
dV
dt

  =   4π 2r
dr
dt

 

 

Rearranging this gives,  

 

   
dr
dt

  =  
2

1

4πr

dV
dt

 

 

If the diameter is 16 cm, then the radius is 8 cm. Hence,  

 

        
dr
dt

  =  
1

4π(64)
. 240 

 

                                              
dr
dt

  =  

240

256π
 

 

                                              
dr
dt

  =  

15

16π
  cm/s 

 

Example 23 

 
In a capacitive circuit, the formula for the total capacitance C  of 2 
capacitors in series is,  
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1

C
  =  

1

1

C
  +   

2

1

C
 

 

If 
1
C  is increasing at a rate of 0 · 5 farads per minute and 

2
C  is 

decreasing at a rate of 0 · 9 farads per minute, at what rate is C  
changing (to 1 d. p.) when 

1
C   =  2 farads and 

2
C   =  1 farad ?  

 
Remember that C, 

1
C  and 

2
C  are secretly functions of time. Firstly, when 

1
C   =  2 farads and 

2
C   =  1 farad, C  =  2/3 farad (easy adding fractions; 

don’t forget to reciprocalise !). Next, differentiate the given equation 

w.r.t. t  to get,  
 

        −
2

1

C
 
dC
dt

  =   −
2
1

1

C
1

dC

dt
  −   

2
2

1

C
2

dC

dt
 

 

With a little algebraic jiggery-pokery, this becomes,  

 

                      
dC
dt

  =   

2

1

C
C

 
  
 

1
dC

dt
  +   

2

2

C
C

 
  
 

2
dC

dt
 

 

List the quantities and their values. C  =  2/3, 
1
C   =  2, 

2
C   =  1, 1

dC

dt
  =  0 · 

5 and 2
dC

dt
  =  −  0 · 9 (it’s negative because it’s decreasing). Now it’s just 

number crunching,  

 

                                
dC
dt

  =   

2
1

3

 
 
 

 . (0 · 5)  +   
2

2

3

 
 
 

. (−  0 · 9) 

 

                                           
dC
dt

  =   

1

18
  −   

2

5
 

 

                                           
dC
dt

  =    −  0 · 3  farads (1 d. p.) 

 
 


