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Further Proof and Number Theory 
 

Prerequisites: Proof techniques (especially Mathematical Induction);  

                       factors of whole numbers.   

                        

Maths Applications: Solving Diophantine equations. 

 

Real-World Applications: Security systems.  

  

Necessary and Sufficient Statements 
 

Definition: 

 

A statement A is sufficient for a statement B if A ⇒  B. 

 

Definition: 

 

A statement B is necessary for a statement A if A ⇒  B. 

 
Example 1 

 

In the conditional, ‘ If Iraq does not have WMDs, then Blair is a liar ’, the 

sufficient statement is ‘ Iraq does not have WMDs ’ and the necessary 

statement is ‘ Blair is a liar ’. 

 

Example 2 

 

The biconditional  ‘ x  = 3 or x  = −3   ⇔   2x  = 9 ’  is true. 

 

 

Definition: 

 

A is necessary and sufficient for B (or B is necessary and sufficient 

for A) if A ⇔  B. 
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Example 3 

 

The biconditional  ‘ x  = 4 or x  = −4   ⇔   2x  = 16 ’, which  is true, says 

that x  = 4 or x  = −4 is sufficient for 2x  = 16 and that x  = 4 or x  = 

−4 is necessary for 2x  = 16.  

 

Further Examples of Proof and Counterexample 
 
Example 4 

 
Prove that if n  ∈ ∞  is divisible by 8, then n  is also divisible by 4.   
 

Suppose that 8 divides n. Then ∃  k  ∈ ∞  s.t.  

 

n  =  8k   
 

         n  =  4  ×   2k 
 

As k  ∈ ∞ , 2k  ∈ ∞ , so 4 divides n.   
 

Example 5 

 

Prove that the cube of an even integer plus the square of an odd integer 

is an odd integer. 

 

Let p  be an even integer and q  an odd integer. Then ∃  m, n ∈ ′  s.t. p  =  
2m  and q  =  2n  +  1. So,  

 
3p   +  2q   =  (2m) 3   +   (2n  +  1) 2  

 

                         =  8 3m   +   (4 2n   +   4n  +  1) 

 

                            =  2 (4 3m   +   2 2n   +   2n)  +  1 

 

As m, n  ∈ ′, 4 3m   +   2 2n   +   2n  ∈ ′, and so 3p   +  2q  is odd.   

 

 

 

 

 



Advanced Higher Notes (Unit 3)  Further Proof and Number Theory  

M Patel (April 2012) 3 St. Machar Academy 

Example 6 
 
Prove that a cubic polynomial P  is divisible by (x  −   a) if and only if P (a)  
=  0. 
 

The statement involves the quantities P (a)  and (x  −   a). To say that P  is 
divisible by the linear factor is the same as saying that there exists a 

polynomial Q (x)  s.t. P (x)  =  (x  −   a) Q (x) (it’s a bit like saying that if 
an integer n  is divisible by 3, then there exists an integer k  s.t. n  =  3k).  
 

Consider the quantity P (x)  −   P (a),  
 

P (x)  −   P (a)  = ( 3Ax  +  2Bx  +  Cx  +  D)  −  ( 3Aa  +  2Ba  +  Ca  +  D)   
 

          = A ( 3x  −  3a )   +   B ( 2x  −  2a )  +   C (x  −   a) 
 

                    = (x  −   a) [A ( 2x  +  ax  +   2a )   +   B (x  +   a)  +   C ]  
 

Taking Q (x)  = [A ( 2x  +  ax  +   2a )   +   B (x  +   a)  +   C ]  +  P (a), we 
can write,   

 

P (x)  =  (x  −   a) Q (x)  +  P (a)         
 

To prove ‘ a cubic polynomial P  is divisible by (x  −   a) ⇒   P (a)  =  0 ’, the 
implicant can be written as P (x)  =  (x  −   a) Q (x)  and comparing this 
with the last equation shows that, 

 

(x  −   a) Q (x)  +  P (a)  =  (x  −   a) Q (x) 
 

        P (a)  =  0 
 

To prove ‘ P (a)  =  0 ⇒   a cubic polynomial P  is divisible by (x  −   a) ’, 
substituting P (a)  =  0 into P (x)  =  (x  −   a) Q (x)  +  P (a)  shows that, 
 

P (x)  =  (x  −   a) Q (x) 
 

Hence, P  is divisible by (x  −   a).  
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Example 7 

 

Prove that 6  +   7 2  is irrational.   

 

Suppose that 6  +   7 2  is rational. Then ∃  m, n ∈ ′  with n  ≠  0 s.t., 

 

6  +   7 2   =  
m
n
 

 

The idea is to reach a contradiction using 2 . Let’s try solving for 2 , 

 

                  7 2   =  
m
n
  −   6 

 

                   7 2   =  
  6m n
n
−

 

 

                     2   =  
  6

7

m n
n

−
 

 

As m, n  ∈ ′ with n  ≠  0, 
  6

7

m n
n

−
 ∈ ⁄. But this means that 2  would be 

rational too; this is the desired contradiction, so 6  +   7 2  is irrational.   

  

Example 8 
 
Prove, or give a counterexample to, the statement ‘ For all natural 

numbers n, (n  +   1) (n  +   2) is even ’. 

 
Experimenting with different values for n  indicates that the statement 
is true (but an indication is not a proof). The idea is to consider 2 cases, 

one where n  is even and the other when n  is odd. 
 

So first assume that n  is even, i.e. assume ∃  k ∈ ∞  s.t. n  =  2k. Then 
 

(n  +   1) (n  +   2)  =  (2k  +   1) (2k  +   2) 

 

                              =  2 (2k  +   1) (k  +   1) 

 

As k ∈ ∞ , 2k +   1, k  +   1 ∈ ∞  and thus so is (2k  +   1) (k  +   1). Hence,  

(n  +   1) (n  +   2) is 2 times a natural number and so is even. 
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Now assume that n  is odd, i.e. assume ∃  k ∈ ∞  s.t. n  =  2k  +   1. Then 

 

(n  +   1) (n  +   2)  =  (2k  +   2) (2k  +   3) 

 

                              =  2 (k  +   1) (2k  +   3) 

 

As k ∈ ∞ , 2k +   3, k  +   1 ∈ ∞  and thus so is (2k  +   3) (k  +   1). Hence,  

(n  +   1) (n  +   2) is 2 times a natural number and so is even. 

 

So, in conclusion, (n  +   1) (n  +   2) is even ∀ n ∈ ∞ . 

 
Example 9  
 
Prove, or give a counterexample to, the statement ‘ All prime numbers are 

odd ’. 

 
The number 2 provides a counterexample to the given statement. 

 

Further Examples of Induction 
 

Now that some more topics have been studied since the last time 

Mathematical Induction was covered, we now have a much more exotic 

collection of examples. 

 

Finite Sums 
 
Example 10  

 

Prove that 

=

+∑
  1

1
  

 (   1)

n

r
r r

 =   

+  1

n
n

, ∀ n ∈ ∞ .  

 

The P(n) statement can be written as,  
 

P(n) : 

=

+∑
  1

1
  

 (   1)

n

r
r r

 =   

+  1

n
n

 

 

The Base Case is n  =  1. The LHS is 
1

2
. The RHS is 

1

2
. Hence, P(1) is true. 

Assume that P(k) is true for some natural number k, i.e.,  
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=

+∑
  1

1
  

 (   1)

k

r
r r

 =   

+  1

k
k

. The RTP statement is,  

 

         

+

=

+∑
  1

  1

1
  

 (   1)

k

r
r r

 =   

+

+

  1

  2

k
k

 

 

 

So, 

 

                    

+

=

+∑
  1

  1

1
  

 (   1)

k

r
r r

 =  

 =

 
 
 + 
 
∑

  1

1
  

 (   1)

k

r
r r

+   
+ +

1

(   1) (   2)k k  

 

                                =  

 
+  1

k
k   +   

+ +

1

(   1) (   2)k k  

 

                                                 =  

 

+

+ +

 (   2)

(   1) (   2)

k k
k k   +   

+ +

1

(   1) (   2)k k  

 

             =  

 

+ +

+ +

2   2   1

(   1) (   2)

k k
k k  

 

             =  

 

+

+ +

2(   1)

(   1) (   2)

k
k k  

 

                                                          =   

+

+

  1

  2

k
k  

 
Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n ∈ ∞). 

 

An important result regarding finite sums is the content of the following 

theorem (prove it by induction).  
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Theorem: 

 

The sum of the squares of the first n  natural numbers is,  
 

2

  1

  

n

r

r
=

∑ =   

1

6
n (n  +   1) (2n  +   1) 

 

Example 11  

 

Show that for any natural number n, the sum of the cubes of the first n  

natural numbers is given by 
1

4
2n 2(   1)n + .  

 

The P(n) statement can be written as,  
 

P(n) : 3

  1

  

n

r

r
=

∑  =   

1

4
2n 2(   1)n +  

 

The Base Case is n  =  1. The LHS is 31   =  1. The RHS is 
1

4
 . 21  . 22   =  1. 

Hence, P(1) is true. Assume that P(k) is true for some natural number k, 

i.e., 3

  1

  

k

r

r
=

∑  =   

1

4
2k 2(   1)k + . The RTP statement is,  

 
+

=

∑
  1

3

  1

  

k

r

r  =   

1

4
2(   1)k +

2(   2)k +  

 

So, 

 
+

=

∑
  1

3

  1

  

k

r

r  =  
3

  1

  

k

r

r
=

 
 
 
 
∑   +   3(   1)k +  

 

                        =  

1

4
2k 2(   1)k +   +   3(   1)k +  

 
There is a major temptation to expand the brackets here – don’t. If it’s 

possible to factorise expressions, do that instead of expanding brackets,  
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especially in examples of this sort where the answer (RHS of RTP 

statement) is written in fully factorised form. Factorising gives,  

 

 

                           =  

1

4
2(   1)k + [ 2k   +   4(k  +   1)] 

 

                         =  

1

4
2(   1)k + ( 2k   +   4k  +   4) 

 

          =  

1

4
2(   1)k +

2(   2)k +  

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n ∈ ∞). 

 

As an interesting point, note that the formula obtained in the above 

example is precisely the square of the expression for the sum of the 

first n  natural numbers. This important enough to state as a theorem. 
 

Theorem: 

 

The sum of the cubes of the first n  natural numbers is,  
 

3

  1

  

n

r

r
=

∑  =   

1

4
2n 2(   1)n +   =  

 2

  1

  

n

r

r
=

 
 
 
 
∑  

 

Note that 

 2

  1

 

n

r

r
=

 
 
 
 
∑ ≠  2

  1

 

n

r

r
=

∑ . As an aside, there is a formula for the 

sum of the k th powers of the first n  natural numbers, but this general 
formula is much harder to prove.  

 

Example 12  

 

Prove that, for any natural number n,  the sum of the first n  terms of an 

arithmetic sequence is given by   (2   (   1) )
2

n
a n d+ − .  
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The statement P(n) can be expressed in terms of a finite sum, namely,  

  1

 

n

r

r

u
=

∑ , i.e.,   

 

P(n) : 
  1

 (   (   1) )

n

r

a r d
=

+ −∑   =    (2   (   1) )
2

n
a n d+ −  

 

where the notation from Unit 2 for arithmetic sequences has been used. 

The Base Case is n  =  1. The LHS is   (1  1)a d+ −  = a. The RHS is 

1
 (2   (1  1) )

2
a d+ −  =  a. Hence, P(1) is true. Assume that P(k) is true for 

some natural number k, i.e., 
  1

 (   (   1) )

k

r

a r d
=

+ −∑   =    (2   (   1) )
2

k
a k d+ − . 

The RTP statement is,  

 
1

  1

 (   (   1) )

k

r

a r d
+

=

+ −∑   =   

1
 (2   ((   1)  1) )

2

k
a k d

+
+ + −  

 

First note that the RHS of the RTP statement can be written as 

(   1)
 (2   )

2

k
a kd

+
+ . So,  

 
1

  1

 (   (   1) )

k

r

a r d
+

=

+ −∑   =  

  1

 (   (   1) )

k

r

a r d
=

 
 + −
 
 
∑   +  (   (   1)  1) )a k d+ + −   

 

               =   (2   (   1) )
2

k
a k d+ −   +  (   )a kd+  

 

            =  ka  +   
2

k
(k  −  1)d    +  (   )a kd+  

 

               =  (k  +  1)a   +   
2

2

k
d  −  

2

k
d    +  kd  

 

                                          =  (k  +  1)a   +   
2

2

k
d  +  

2

k
d 
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                                          =  (k  +  1)a   +   
2

k
(k  +  1)d 

 

                                          =  

(   1)
 (2   )

2

k
a kd

+
+  

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n ∈ ∞). 

 

Matrices 
 
Example 13  

 

Prove that, for a, b ∈ ϒ, 
  

=     
   

0 0
  

0 0

n n

n

a a

b b
, ∀ n ∈ ∞ . 

 

The P(n) statement can be written as,  
 

P(n) : 
  

=     
   

0 0
  

0 0

n n

n

a a

b b
 

 

The Base Case is n  =  1. The LHS is 
   

=   
   

1
0 0

  
0 0

a a

b b
. The RHS is 

   
=    

  

1

1

00
  

00

aa

bb
. Hence, P(1) is true. Assume that P(k) is true for 

some natural number k, i.e., 
  

=     
   

0 0
  

0 0

k k

k

a a

b b
. The RTP statement is,  

 

         

+
+

+

  
=     

   

1
1

1

0 0
  

0 0

k k

k

a a

b b
 

 

So, 

  

         

+

     
=     

     

1
0 0 0

  
0 0 0

k k
a a a

b b b
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=     

  

00
  

00

k

k

aa

bb
 

 

Performing the simple matrix multiplication shows that 
 

   

+
+

+

  
=     

   

1
1

1

0 0
  

0 0

k k

k

a a

b b
 

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n ∈ ∞). 

 

Example 14  
 

Show that ( )
−

− − −
=… …

1 1 1 1
1 2 2 1
        

n n
A A A A A A , for all natural numbers n 

greater than or equal to 2. 

 

We have,  

 

                           P(n) : ( )
−

− − −
=… …

1 1 1 1
1 2 2 1
        

n n
A A A A A A  

 

The Base Case is n  =  2. The LHS is ( )
−1

1 2
 A A . The RHS is − −1 1

2 1
 A A . 

Hence, P(2) is true. Assume that P(k) is true for some natural number k, 

i.e., ( )
−

− − −
=… …

1 1 1 1
1 2 2 1
        

k k
A A A A A A . The RTP statement is,  

 

          

( )
−

− − − −

+ +
=… …

1 1 1 1 1
1 2 1 1 2 1
          

k k k k
A A A A A A A A  

 
So, 

  

            

( ) ( )( )
−−

+ +
=… …

11

1 2 1 1 2 1
           k k k kA A A A A A A A

 
 

                                                ( )
−

−

+
= …

11
1 1 2

     
k k

A A A A  

 

                                                     ( )− − − −

+
= …

1 1 1 1
1 2 1

     k kA A A A  

 

                                                 
− − − −

+
= …

1 1 1 1
1 2 1

     k kA A A A  
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Thus, P(k) true ⇒  P(k  +   1) true. So, P(2) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true for all natural numbers 
greater than 1. 

 

Differentiation 
 

Induction examples involving differentiation can look scary, but if the 

notation for higher derivatives is remembered, they are easy. 

 

Example 15  

 

Prove that, for a ∈ ϒ,   (e )
n

ax

n

d

dx
  =  na eax

  (∀ n ∈ ∞). 

 

P(n) :  (e )
n

ax

n

d

dx
  =  na eax

   

 

The Base Case is n  =  1. The LHS is  (e )axd
dx

, which is clearly equal to a

eax . The RHS is a eax . Hence, P(1) is true. Assume that P(k) is true for 

some natural number k, i.e.,  (e )
k

ax

k

d

dx
  =  ka eax . The RTP statement is,  

 

         
1

1
 (e )

k
ax

k

d

dx

+

+
  =  1ka + eax  

 

So,  

 

                        
1

1
 (e )

k
ax

k

d

dx

+

+
  =  

d
dx

1

1
 (e )

k
ax

k

d

dx

+

+

 
 
 

 

 

                                           =  

d
dx

( ka eax ) 

 

                                           =  
ka
d
dx

(eax ) 

 

                                         =  
ka  (a eax ) 

 

                                    =  
1ka + eax  
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                           ∴               
1

1
 (e )

k
ax

k

d

dx

+

+
  =  1ka + eax  

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n ∈ ∞). 

 

Example 16  
 

Prove that  
2

2
 (sin )

n

n

d
x

dx
  =   ( 1)  sin  n x−    (∀ n ∈ ∞). 

 

P(n) : 
2

2
 (sin )

n

n

d
x

dx
  =   ( 1)  sin  n x−  

 

Don’t let the 2n  be a distraction. The statement just says that even 
derivatives (2nd, 4th, 6th, etc.) of sin x  are either sin x  or −  sin x. The 

Base Case is n  =  1. The LHS is 
2

2
 (sin )

d
x

dx
  =   (cos )

d
x

dx
  =  −  sin x. 

The RHS is −  sin x. Hence, as equality holds, P(1) is true. Now assume 

that P(k) is true for some natural number k, i.e., 
2

2
 (sin )

k

k

d
x

dx
  =  

 ( 1)  sin  k x− . The RTP statement is,  

 
2( 1)

2( 1)
 (sin )

k

k

d
x

dx

+

+
  =   1( 1)  sin  k x+

−  

 

So,  

 

  
2( 1)

2( 1)
 (sin )

k

k

d
x

dx

+

+
  =   

2 2

2 2
 (sin )

k

k

d
x

dx

+

+
 

 

Splitting up the derivative this time is less obvious, but remember that 

we want to use the inductive hypothesis.  

 

          
2( 1)

2( 1)
 (sin )

k

k

d
x

dx

+

+
  =   

2

2

d

dx

2

2
 (sin )

k

k

d
x

dx

 
 
 

 

 

                                         =   
2

2

d

dx
( ) ( 1)  sin k x−  
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                                      =    ( 1) k
−

2

2

d

dx
 (sin x) 

 

                                  =    ( 1) k
− . (−  sin x) 

 

                                      =    ( 1) k
− . (−1) . sin x 

 

                              =   1( 1)  sin  k x+
−  

 

              ∴               
2( 1)

2( 1)
 (sin )

k

k

d
x

dx

+

+
  =   1( 1)  sin  k x+

−  

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n ∈ ∞). 

 

Inequalities 
 

Example 17  

 

Prove that 2 n   >   2n  (∀ n  ≥  5).  
 

P(n) : 2 n   >   2n  

 

The Base Case is n  =  5. The LHS is 32, whereas the RHS is 25. As 32  >   

25, P(5) is true. Assume that P(k) is true for some natural number k  ≥  5, 

i.e., 2 k   >   2k . The RTP statement is, 

 

RTP : 2 1k +   >   (k  +   1) 2  

 

Note that 2(   1)k +  = 2k   +   2k  +   1. Also, k  >   4  ⇒   2k  >   8 and 2k   

>   4k. So,  
 

2 1k +   =  2 k . 2 

 

         >   2k  . 2 

 

               =  2k   +   2k  
 

               >   2k   +   4k  
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                          =  2k   +   2k  +   2k  
 

                        >   2k   +   2k  +   8 

 

                        >   2k   +   2k  +   1 

 

               =  (k  +   1) 2  

 

                                ∴             2 1k +   >   (k  +   1) 2  

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(5) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n  ≥  5). 
 

Example 18  

 

Show that (n  +   1) !   >   3n   (∀ n  >  3). 
 

P(n) : (n  +   1) !   >   3n    

 

The Base Case is n  =  4. The LHS is 120, whereas the RHS is 64. As 120  
>   64, P(4) is true. Assume that P(k) is true for some natural number k  ≥  

5, i.e., (k  +   1) !   >   3k   . The RTP statement is, 

 

RTP : (k  +   2) !   >   (k  +   1) 3  

 

Note that 3(   1)k +  = 3k   +   3 2k   +   3k  +   1. Also, k  >   3  ⇒   k  +   2  

>   5, 2k   >   3k  and 3k   >   3 2k . So,  

 

(k  +   2) !     =  (k  +   2) . (k  +   1) !      
 

         >   (k  +   2) . 3k  

 

                                                  >   5 3k  

 

       =  3k   +   4 3k  

 

        >   3k   +   12 2k  

 

                    =  3k   +   3 2k   +   9 2k  
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                    >   3k   +   3 2k   +   27k 
 

                                =  3k   +   3 2k   +   3k   +   24k 
 

                              >   3k   +   3 2k   +   3k   +   72 

 

                            >   3k   +   3 2k   +   3k   +   1 
 

     =  (k  +   1) 3  

 

                 ∴             (k  +   2) !   >   (k  +   1) 3  

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(4) is true and P(k) true ⇒  P(k  +   

1) true imply, via the PMI, that P(n) is true (∀ n  >  3). 
 

Divisibility 
 

Example 19  

 

Prove that 6 n  +  4 is divisible by 5 (∀ n  ∈ ∞). 

 

P(n) : ∃ r  ∈ ∞ s.t.  + =6   4  5n r  
 

The Base Case is n  =  1. The LHS is 10, as is the RHS. Hence, P(1) is true. 

Assume that P(k) is true for some natural number k, i.e., + =6   4  5k r . 
The RTP statement is, 

 

RTP : ∃ s  ∈ ∞ s.t.  +
+ =

16   4  5k s  
 

So,   

 
+

+ =
16   4 k  6k . 6  +   4 

 

                          = −(5   4)r . 6  +   4  
 

                        =  30r  −   24  +   4  
 

               =  30r  −   20 
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                =  5 (6r  −   4)   
 

As r  ∈ ∞ , 6r  −   4 ∈ ∞ , and so +
+

16   4k
 is divisible by 5. So,  

P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒  P(k  +   1) 

true imply, via the PMI, that P(n) is true ∀ n  ∈ ∞ . 

 

Example 20  

 

Prove that 7 2n  −  48n  −   1  is divisible by 576 (∀ n  ∈ ∞). 

 
P(n) : ∃ r  ∈ ∞ s.t.  7 2n  −  48n  −   1  =  576r  

 

The Base Case is n  =  1. Substituting this value of n into the given 
expression yields 49  −   48  −   1  =  0, which is clearly divisible by 576. 
Hence, P(1) is true. Assume that P(k) is true for some natural number k, 
i.e., 7 2k  −  48k  −   1  =  576r. The RTP statement is, 
 

RTP : ∃ s  ∈ ∞ s.t.  7 +2( 1)k  −  48 (k  +  1)  −   1  =  576s 
 

So,   

 

      7 +2( 1)k  −   48 (k  +  1)  −   1   
 

=   7
+2 2k  −   48 (k  +  1)  −   1   

 

     =   7
2k . 7 2   −   48 (k  +  1)  −   1 

 

                       =   (576r  +  48k  +  1) . 49  −   48k   −   49 
 

                                 =   576 (49r)  +   49 . 48k  +   49  −   48k   −   49 
      

                                     =   576 (49r)  +   2 304k   
 

                                     =   576 (49r  +   4k)   
 
As k, r  ∈ ∞ , 49r  +   4k ∈ ∞ , and so 7 +2( 1)k  −   48 (k  +  1)  −   1 is divisible 
by 576. So, P(k) true ⇒  P(k  +   1) true. Together with P(1) is true, this 

implies, via the PMI, that P(n) is true ∀ n  ∈ ∞ . 
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Number Theory 
 

The Division Algorithm 
 

Theorem (Division Algorithm): 

 

Given a, b ∈ ∞ , ∃ !  q (quotient), r (remainder) ∈ ∞ satisfying, 

 

a   =   bq   +   r             (0 ≤  r <  b) 

 

Definition: 

 

The greatest common divisor (aka highest common factor) of 2 natural 

numbers a and b, denoted GCD(a, b) is the biggest natural number that 
exactly divides those 2 numbers. 

 

Theorem: 

 

When a   =   bq   +   r,  GCD(a, b)  =   GCD(b, r). 

 

The Euclidean Algorithm and the HCF 
 

The Division Algorithm and repeated use of the above give the following. 

 

Theorem (Euclidean Algorithm): 

 

A repeated use of the Division Algorithm for the integers a  and b,   
 

a   =   b 
1
q    +   

1
r   (0 ≤  

1
r  <  b) 

 
  b   =   

1
r  

2
q    +   

2
r   (0 ≤  

2
r  <  

1
r ) 

 
 

1
r    =   

2
r  

3
q    +   

3
r   (0 ≤  

3
r  <  

2
r ) 

 

�  
 

                              
2kr −
   =   

1kr −
 kq     

 
then gives GCD(a, b)  =  

1kr −
. 
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Example 21  

 

Find the GCD of 203 and 8 using the Euclidean Algorithm. 

 

203  =  8 . 25  +   3      ⇒    GCD(203, 8)  =   GCD(8, 3) 

 

                   8  =  3 . 2  +   2         ⇒         GCD(8, 3)  =   GCD(3, 2) 

 

                   3  =  2 . 1  +   1          ⇒         GCD(3, 2)  =   GCD(2, 1) 

 

                   2  =  1 . 2                   ⇒         GCD(2, 1)  =   1 

 

Hence, stringing the equalities for the GCDs together shows that 

GCD(203, 8)  =  1. 

 

Theorem (Bézout’s Lemma): 

 

For any pair of non-zero integers a  and b, the Euclidean Algorithm can be 
used to write GCD(a, b) as,  
 

GCD(a, b)  =  ax  +   by 
 

where x, y  ∈ ′. 

 

Example 22  

 

Write GCD(30, 42) in the form 30x  +   42y, stating the values of the 
integers x  and y.  
 

The Euclidean Algorithm gives, 

 

42  =  30 . 1  +   12      ⇒    GCD(42, 30)  =   GCD(30, 12) 

 

              30  =  12 . 2  +   6        ⇒     GCD(30, 12)  =   GCD(12, 6) 

 

               12  =  6 . 2                  ⇒        GCD(12, 6)  =   6 

 

Hence, GCD(42, 30)  =  6.  Solving for the remainders,  

 

42  =  30 . 1  +   12      ⇒    12  =   42  −   30 . 1 
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                     30  =  12 . 2  +   6         ⇒      6  =  30  −   12 . 2 

 

                      12  =  6 . 2                   ⇒      0  =  12  −   6 . 2 

 

and working backwards gives, 

 

6  =  30  −   12 . 2 

 

                          =  30  −   (42  −   30 . 1) . 2 

 

                        =  30  −   42 . 2  +   30 . 2 

 

i.e.,  

 

     6  =  30 . 3  −   42 . 2 

 

with x  =  3 and y  =  −  2.     
 

Definition: 

 

2 integers a  and b  are coprime (aka relatively prime) if GCD(a, b)  =  1.   

 

Example 23  

 

Determine whether or not 4 and 7 are coprime. 

 

Working out the GCD gives,  

 

7   =   4 . 1   +   3 

 

                                             4   =   3 . 1   +   1  

 

                                             3   =   1 . 3   
 

Hence, as GCD(4, 7)  =  1, 4 and 7 are coprime.    
 

Example 24  

 

Show that 12 and 16 are not relatively prime. 

 

Working out the GCD gives,  
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16   =   12 . 1   +   4 

 

                                            12   =   4 . 3 

 

So, as GCD(12,16)  ≠  1 (as it equals 4), 12 and 16 are not relatively prime.    
 

Definition: 

 

A linear Diophantine equation is an equation of the form, 

 

ax  +   by   =  c         (a, b, c, x, y ∈ ′) 

 

Theorem: 

 

A linear Diophantine equation has a solution provided that GCD(a, b) 
divides c. 

 

Example 25  

 

Show that the Diophantine equation  3x  +   6y   =  5  has no solutions. 
 

As GCD(3, 6)  =  3 and 3 does not divide 5, the given equation has no 

solutions.  

 

Theorem: 

 

If a linear Diophantine equation has a solution, then it has infinitely many 

solutions. 

 

Theorem: 

 

If (x, y) is a solution to the Diophantine equation ax  +   by   =  c, then 

 (x  +   b, y  −   a) is also a solution to ax  +   by   =  c. 

 

Example 26  

 

Find all solutions to the Diophantine equation 30x  −   42y   =  66. 
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From Example 22, GCD(42, 30)  =  6  =  30 . 3  −   42 . 2. As 6 divides 66, 

solutions to the given Diophantine equation exist.  

 

As, 

 

6 . 11  =  30 . 33  −   42 . 22 

 

x  =  33 and y  =  −  22 are solutions to the given equation. All other 

solutions are of the form x  =  33  +   42n  and y  =  −  22  +   30n. 
 

Number Bases 
 

Theorem: 

 

Any number A  may be written uniquely in base n  as, 
 

−

−

=

=∑
  

   

k

k i
k i

i

A r n
0

 ≡   ( )     
k k n
r r r r r

1 2 1 0−
…

 

 

by dividing A, and all subsequent quotients, by n and obtaining the 
remainders (until a zero quotient is reached).

 

 

Changing a number to base 10 is quite easy. 

 

Example 27  

 
Write (2031)

5
 in base 10.  

 

(2031)
5

 =  2 . 5 3

 
+  0 . 5

2

 
+  3 . 5

1

 
+  1 . 5

0

 
 

                                            =  2 . 125
 
+  0 

 
+  15

 
+  1 

 

                                            =  (266)
10
 

 
Changing a base 10 number to another base requires use of the previous 

theorem. 
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Example 28  

 
Change (8469)

10
 to base 7. 

 
8 469 

 
÷   7  =  1 209  remainder  6 

 

                               1 209 
 
÷   7  =  172  remainder  5 

 

                                  172 
 
÷   7  =  24  remainder  4 

 

                                    24 
 
÷   7  =  3  remainder  3 

 

                                      3 
 
÷   7  =  0  remainder  3 

 

Hence, according to the above theorem, (8469)
 10   

=   (33456)
 17

. 

 
For number bases bigger than 10, we need to invent new symbols for the 

bigger numbers. For example, in base 13, A stands for 11, B for 12 and C 

for 13. 

 
Example 29  

 

Convert (8A69)
12
 to base 5. 

 
We convert (8A69)

12
 to base 10, then change that to base 5. Performing 

the first conversion gives,  

 

      (8A69)
12   =  8 . 12

3

 
+  11 . 12

2

 
+  6 . 12

1

 
+  9 . 12

0

 
  

                                            =  8 . 1 728
 
+  11 . 144

 
 
 
+   6 . 12 

 
+   9 . 1 

 

                                            =  (15489)
10
 

 
Next, change this base 10 number into base 5, 

 

15 489 
 
÷   5  =  3 097  remainder  4 

 

                               3 097 
 
÷    5  =  619  remainder  2 

 

                                   619 
 
÷   5  =  123  remainder  4 
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                                   123 
 
÷   5  =  24  remainder  3 

 

                                      24
 
÷   5  =  4  remainder  4 

 

   4
 
÷   5  =  0  remainder  4 

 

Hence, (8A69)
12   =  (443424) 5 . 

 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 


