Partial Fractions

Prerequisites: Solving simple equations; comparing coefficients;
factorising simple quadratics and cubics; polynomial division.

Maths Applications: Integration; graph sketching.

Real-World Applications: Population growth.

Rational Functions

Definition:

A polynomial divided by another polynomial is called a rational function,

$$
\frac{p(x)}{q(x)}
$$

If $\operatorname{deg} p<\operatorname{deg} q$, the above is called a proper rational function, whereas if $\operatorname{deg} p \geq \operatorname{deg} q$, the above is called an improper rational function.

A rational function can be written in terms of a proper rational function.

Polynomial Long Division

Polynomial long division is a technique used to write an improper rational function in terms of a proper rational function. The technique can be illustrated by analogy with long division of whole numbers.

Example 1

Divide 3692 by 15 .

15 \begin{tabular}{|c}

3692
3000

\end{tabular}$\quad 3692=(15 \times 200)+692$

692

Notice the 2 is in the hundreds column so it's really 200.

692 is not less than 15 , so we continue,
$1 5 \longdiv { 3 6 9 2 }$
3000
692
600
92
$3692=(15 \times 200)+692$
$692=(15 \times 40)+92$

92 is not less than 15 , so we continue,

As 2 is less than 15 , we stop.

Putting the 3 calculations on the RHS together gives,

$$
3692=(15 \times 200)+(15 \times 40)+(15 \times 6)+2
$$

In other words,

$$
3692=(15 \times 246)+2
$$

The quotient is 246 and the remainder is 2 . This can be written in the alternative form,

$$
\frac{3692}{15}=246+\frac{2}{15}
$$

Example 2

Divide $2 x^{2}+3 x-5$ by $x-2$.

$$
x - 2 \longdiv { \frac { 2 x } { 2 x ^ { 2 } + 3 x - 5 } } \frac { 2 x ^ { 2 } - 4 x } { 7 x - 5 } + 3 x - 5 = (x - 2) 2 x + 7 x - 5
$$

As $7 x-5$ has a degree which is not less than the degree of $x-2$, we continue,

$$
x-2 \begin{array}{r}
\begin{array}{r}
2 x+7 \\
\frac{2 x^{2}+3 x-5}{2 x^{2}-4 x}
\end{array} \\
\frac{\begin{array}{r}
7 x-5 \\
7 x-14
\end{array}}{+9}
\end{array} \quad 2 x^{2}+3 x-5=(x-2) 2 x+7 x-5
$$

As the degree of 9 is less than the degree of $x-2$, we stop.
Putting the two calculations on the RHS together gives, upon simplifying,

$$
\begin{gathered}
2 x^{2}+3 x-5=(x-2) 2 x+(x-2) 7+9 \\
2 x^{2}+3 x-5=(x-2)(2 x+7)+9
\end{gathered}
$$

So, the quotient is $2 x+7$ and the remainder is 9 . This can be written in the alternative form,

$$
\frac{2 x^{2}+3 x-5}{x-2}=(2 x+7)+\frac{9}{x-2}
$$

Reducible and Irreducible polynomials

Some polynomials can be factorised using the real number system, others can't.

Definition:

A polynomial p is reducible if it can be factorised into polynomials, none of which are equal to the polynomials 1 and p.

A polynomial is irreducible if it is not reducible.

Partial Fraction Decompositions

Rational functions can be broken down into proper rational functions.

Theorem (Partial Fraction Decomposition Theorem):

Any rational function $\frac{p}{q}$ can be written as a polynomial plus a sum of proper rational functions each of which is of the form,

$$
\frac{g(x)}{r(x)^{n}} \quad(n \in \mathbb{N})
$$

where r is an irreducible factor of q and $\operatorname{deg} g<\operatorname{deg} r$; such proper rational functions are called partial fractions of $\frac{p}{q}$.

Rational functions that have at most a cubic denominator will be studied. The cubic will factorise into either 3 linear factors (2 of which may be the same) or 1 linear and 1 irreducible quadratic factor.

Types of Partial Fractions Arising from a Cubic Denominator

In the following table, $a \neq 0$, each factor is non-zero and $S, T \in \mathbb{R}$.

Factor	Partial Fraction
$a x+b$ (non-repeated linear)	$\frac{S}{a x+b}$
$(a x+b)^{2}$ (repeated linear)	$\frac{S}{a x+b}+\frac{T}{(a x+b)^{2}}$
$a x^{2}+b x+c$ (irreducible quadratic)	$\frac{S x+T}{a x^{2}+b x+c}$

Long division can be done by dividing with a quadratic, cubic etc. For example, check (by expanding the denominator and then long dividing) that,

$$
\frac{2 x^{2}+3 x-4}{(x-1)(x+2)}=2+\frac{x}{(x-1)(x+2)}
$$

3 Distinct Linear Factors

Example 3

Find partial fractions for $\frac{3 x+5}{(x+1)(x+2)(x-3)}$.

$$
\frac{3 x+5}{(x+1)(x+2)(x-3)}=\frac{5}{x+1}+\frac{T}{x+2}+\frac{U}{x-3}
$$

Multiply both sides of the above equation by $(x+1)(x+2)(x-3)$ to give,

$$
3 x+5=S(x+2)(x-3)+T(x+1)(x-3)+U(x+1)(x+2)
$$

$x=-1$ gives,

$$
\begin{aligned}
3(-1)+5 & =S(-1+2)(-1-3)+0+0 \\
2 & =S(1)(-4) \\
S & =-\frac{1}{2}
\end{aligned}
$$

Similarly, $x=-2$ and $x=3$ respectively give,

$$
T=-\frac{1}{5}, U=\frac{7}{10}
$$

Hence,

$$
\frac{3 x+5}{(x+1)(x+2)(x-3)}=-\frac{1}{2(x+1)}-\frac{1}{5(x+2)}+\frac{7}{10(x-3)}
$$

2 Distinct Linear Factors (with 1 of these Repeated)

Example 4

Express $\frac{x^{2}+6 x-4}{(x+2)^{2}(x-4)}$ in partial fractions.

$$
\begin{gathered}
\frac{x^{2}+6 x-4}{(x+2)^{2}(x-4)}=\frac{S}{x+2}+\frac{T}{(x+2)^{2}}+\frac{U}{x-4} \\
x^{2}+6 x-4=S(x+2)(x-4)+T(x-4)+U(x+2)^{2}
\end{gathered}
$$

$x=-2$ gives,

$$
\begin{aligned}
4-12-4 & =0+T(-6)+0 \\
6 T & =12 \\
T & =2
\end{aligned}
$$

$x=4$ gives,

$$
\begin{aligned}
16+24-4 & =0+0+U(36) \\
36 U & =36 \\
U & =1
\end{aligned}
$$

Comparing coefficients of x^{2} gives,

$$
1=S+U \Rightarrow S=0
$$

So,

$$
\frac{x^{2}+6 x-4}{(x+2)^{2}(x-4)}=\frac{2}{(x+2)^{2}}+\frac{1}{x-4}
$$

1 Linear Factor and 1 Irreducible Quadratic Factor

Example 5

Find partial fractions for $\frac{x^{2}-4}{(3 x+2)\left(x^{2}+1\right)}$.

$$
\begin{aligned}
& \frac{x^{2}-4}{(3 x+2)\left(x^{2}+1\right)}=\frac{S}{3 x+2}+\frac{T x+U}{x^{2}+1} \\
& x^{2}-4=S\left(x^{2}+1\right)+(T x+U)(3 x+2)
\end{aligned}
$$

$x=-\frac{2}{3}$ gives,

$$
\begin{aligned}
\frac{4}{9}-4 & =S\left(\frac{4}{9}+1\right)+0 \\
\frac{13}{9} S & =-\frac{32}{9} \\
S & =-\frac{32}{13}
\end{aligned}
$$

Expanding out the RHS of the main equation gives,

$$
x^{2}-4=(S+3 T) x^{2}+(2 T+3 U) x+(S+2 U)
$$

Comparing coefficients of both sides gives,

$$
\begin{gathered}
S+3 T=1 \Rightarrow T=\frac{15}{13} \\
S+2 U=-4 \Rightarrow U=-\frac{10}{13}
\end{gathered}
$$

Hence,

$$
\frac{x^{2}-4}{(3 x+2)\left(x^{2}+1\right)}=-\frac{32}{13(3 x+2)}+\frac{15 x-10}{13\left(x^{2}+1\right)}
$$

