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Proof and Elementary Number Theory 
 

Prerequisites: Basic arithmetic, algebra, geometry and calculus. 

 

Maths Applications: Proving and disproving statements. 

 

Real-World Applications: How to think and argue logically.  

  

Sentences and Statements 
 
Maths is based on the rules of logic. These rules apply to certain special 

types of objects. 

 

Definition: 

 

A sentence is any meaningful string of symbols or letters.  

 
Example 1 

 

‘ Red is a colour ’, ‘ Maths is fun ’ and ‘ 9 is a prime number ’ are all 

sentences, as they are each a meaningful string of letters and symbols.  

 

Note that sentences can be true or false, but do not have to be (it 

doesn’t really make sense to ask if the second sentence in Example 1 is 

true or false; it is very subjective). 

 

Definition: 

 

A statement (aka proposition) is a sentence that is either true or false 

(but not both).  

 
Example 2 

 

Referring to Example 1, ‘ Red is a colour ’ is a true statement, according 

to the meanings of the words in that order. ‘ 9 is a prime number ’ is a 

false statement, as 3 is a factor of 9. ‘ Maths is fun ’ is not a statement, 

as there is no way to decide whether the statement is true or false 

without further information (such as who is speaking, when the sentence 

was stated, etc.).  
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Example 3 

 

‘ Stop running ! ’ is not a statement, as it makes no sense to ask for the 

truth or falsity. It is more of an instruction. 

 

Example 4 

 

‘ What is your name ? ’ is not a statement; it’s a question.   

 

Example 5 

 

‘ This sentence is false ’. Is the sentence true or false ? If it is true, then 

according to the sentence, it is false. However, if it is false, then it is 

true. So, it is not a statement. 

 

Note that outwith mathematics, the sentences in all the examples above 

would be regarded as ‘ statements ’, but according to the above definition 

they are not. 

 

Types of Statements 
 

Definition: 

 

A compound statement is a combination of statements. 

 
Two special types of compound statements occur frequently and they 

have special names. 

 

Definition: 

 

The conjunction of 2 statements S and T is the statement ‘ S and T ’, and 

is true when both S and T are true.  

 
The conjunction of 2 statements can be true or false. 

 
Example 6 

 

The compound statement ‘ Red is a colour and 9 is a prime number ’ is 

false, as both statements need to be true. 
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Definition: 

 

The disjunction of 2 statements S and T is the statement ‘ S or T ’, and 

is true when at least one of S or T is true.  

 

The disjunction of 2 statements can be true or false. 

 

Example 7 

 

The compound statement ‘ Red is a colour or 9 is a prime number ’ is true, 

as at least one of the statements is true. 

 

Definition: 

 

The negation of a statement S is the statement ‘ not S ’, denoted S∼ , 

and is true when S is false (and vice versa). 

 

Example 8 

 

If S is the statement ‘ 9 is a prime number ’ (which, remember, is false), 

then S∼  is the statement ‘ 9 is not a prime number ’ (which is true).     

 

Many important statements in maths are classed as quantified. There are 

2 types. 

 

Definition: 

 

A universal statement is one that refers to all elements of a set. 

 

The symbol ∀  (‘ upside down A ’) is called the universal quantifier and 

means ‘ for all ’.  

 

Example 9 

 

The universal statement 2x  >  0 (∀ x ∈ ℝ) is false (take x =  0). 
 

Example 10 

 

The universal statement ‘ All squares and triangles are polygons ’ is true. 
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Definition: 

 

An existential statement is one that refers to the existence of at least 

one element of a set. 

 

The symbol ∃  (‘ reflected E ’) is called the existential quantifier and 

means ‘ there exists ’.  

 

Example 11 

 

The existential statement ‘ There exists a negative number y  such that 
3y   =   27 ’ is false.   

 

Example 12 

 

The existential statement ‘ There is a planet that supports life ’ is true 

(for example, Earth). 

 

Note that some statements in real-life may be true or false depending on 

when the statement was made. For example, ‘ Earth is the only planet that 

has life ’ is a statement that we believe to be true, but may be false at 

the moment (there may be life elsewhere, but we haven’t discovered it) or 

may be false in the future (maybe there is a planet that is in the process 

of forming life). 

 

Proofs and Counterexamples 
 

Definition: 

 

A proof is a logically convincing argument that a given statement is true. 

 

In a proof, we use starting points and reach an end point.   

 

Definition: 

 

An axiom  (aka assumption or hypothesis  or postulate  or premise) is a 
statement that is taken to be true (not requiring proof) and used before 

the end of an argument. 
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Definition: 

 

A conclusion  (aka thesis) is a statement that is reached at the end of an 

argument. 

 

Implication 
 
It is important to know when one statement follows from another. This 

process gives another type of statement.   

 

Definition: 

 

The statement ‘ If A, then B ’ is called a (material) implication (aka if, 

then statement  or conditional or implication) and written A ⇒  B (read ‘ 

A implies  B ’ or ‘ B  is implied by A ’). A ⇒  B is true except when A is 

true and B is false (a true statement cannot imply a false one).  

 

A is called the implicant (aka antecedent) and B the implicand (aka 
consequent). The symbol ⇒  is the implication symbol and means ‘ implies ’. 

 

Everyday examples of this can be weird, but the definition serves 

mathematical purposes. Remember, a true statement cannot imply a false 

one; anything else is allowed. 

 

Example 13 

 

Technically, the implication ‘ The Pope has walked on the Moon ⇒  Apes 

rule the planet ’ is true (even though both statements are false, at the 

moment).  

 

Example 14 

 

The implication ‘ 2  +   2  =  7  ⇒   3 is a prime number ’ is true.  

 

Example 15 

 

The implication ‘ n  is odd  ⇒   2n  is odd ’ is true. 
 

Examples like 13 and 14 will not be considered in this course, but it is 

instructive to be aware of what can happen logically. 
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Definition: 

 

Statements A and B are equivalent, denoted A ⇔  B (read, ‘ A if and only 

if  B ’), if A ⇒  B and B ⇒  A. 

 
The statement A ⇔  B is called a biconditional or double implication. 

 

Example 16 

 

The double implication ‘ P is a parallelogram  ⇔   P is a quadrilateral ’ is 

false. ‘ P is a parallelogram  ⇒   P is a quadrilateral ’ is true, but ‘ P is a 

quadrilateral  ⇒   P is a parallelogram ’ is false, as not all quadrilaterals 

are parallelograms.  

 

Example 17 

 

The biconditional  ‘ x  =  3 or x  =  −3   ⇔   2x  =  9 ’  is true. 

 

Definition: 

 

The converse of the statement A ⇒  B is B ⇒  A. 

 

The converse of a statement may be true or false. 

 

Example 18 

 

The converse of  ‘ T is a triangle ⇒  T is a polygon ’ (which is true) is ‘ T is 

a polygon ⇒  T is a triangle ’ (which is false). 

 

Example 19 

 

The converse of  ‘ n  is an even number  ⇒  n  is divisible by 2 ’ (true) is  
‘n  is divisible by 2  ⇒  n  is an even number ’ (true).  
 

Definition: 

 

The inverse of the statement A ⇒  B is A∼  ⇒  B∼ . 

 

The inverse of a statement may be true or false. 
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Example 20 

 

The inverse of  ‘ T is a triangle ⇒  T is a polygon ’ (true) is ‘ T is not a 

triangle ⇒  T is not a polygon ’ (may be false, for example, a square). 

 

Example 21 

 

The inverse of  ‘ n  is an even number  ⇒  n  is divisible by 2 ’ (true) is  
‘ n  is not an even number  ⇒  n  is not divisible by 2 ’ (true).  
 

Definition: 

 

The contrapositive of the statement A ⇒  B is B∼  ⇒  A∼  and is 

equivalent to the statement A ⇒  B. 

 

So, the contrapositive of a given statement has the same truth value 

(true or false) as the given statement. 

 

Example 22 

 

The contrapositive of  ‘ T is a triangle ⇒  T is a polygon ’ (true) is ‘ T is 

not a polygon ⇒  T is not a triangle ’ (true). 

 

Example 23 

 

The contrapositive of  ‘ n  is even  ⇒  n  +   1 is even ’ (false) is  ‘n  +   1  is 

odd  ⇒  n  is odd ’ (false). 
 

Definition: 

 

An example (aka instance) is something that satisfies a given statement. 

 

An existential statement can be proved by citing an example. 

 

Example 24 

 

∃n ∈ ℕ  such that 2n   +   1  is even. 

 

For 2n   +   1 to be even, 2n  must be odd. So, for example, pick n  =  3. 

Then 23   +   1  =   10, which is even. So, the example n  =  3 will work.  
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Definition: 

 

A counterexample is an exception to a proposed statement. 

 

Definition: 

 

To disprove a statement means proving a statement false. 

 

A universal statement can be disproved by citing a counterexample. 

 

Example 25 

 
3n  +  n  +  5  is prime  (∀ n ∈ ℕ). 

 

Pick values of n  until one is reached that makes the statement false. n  =  

1 gives 7, n  =  2 gives 15, which is clearly not prime. So, n =  2 is a 

counterexample to the given statement. 

 

There are different proof techniques. The ones we will study fall into the 

following categories. 

 

• Direct Proof. 

 

• Indirect Proof. 

 

• Mathematical Induction Proof. 

 

The end of a proof is often denoted by various symbols. These include ∎, 

■, □ and Q. E. D. (Quod Erat Demonstrandum, latin for ‘ that which was to 
be demonstrated ’).  

 

Direct Proof 
 

Definition: 

 

A direct proof is a proof that involves starting from assumptions and 
reaching a conclusion by a chain of directly flowing logical steps (often a 

string of equalities or inequalities). 
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Example 26 

 

Prove that the sum of two rational numbers is rational. 

 

Let p, q  ∈ ℚ. Then ∃  a, b, c, d  ∈ ℤ  with b, d  ≠  0  such that p  =  
a
b
 and 

q  =  
c
d

. Then,  

 

p  +  q   =   
a
b
  +   

c
d

  

 

              =   
  ad bc
bd

+
    

 

As a, b, c, d  ∈ ℤ, ad  +  bc, bd  ∈ ℤ; also, b, d  ≠  0 ⇒  bd  ≠  0. So, p  +  q  
is one integer divided by a non-zero integer. Hence, p  +  q  ∈ ℚ.  

  

Example 27 

 

Prove that the square of an even number is even.   

 

Let n  be an even number. Then ∃k ∈ ℤ  s.t. (such that) n  =   2k. Hence,  
 

2n  =  (2k) 2  
 

                                                 2n  =  4 2k  

 

  2n  =  2(2 2k ) 

 

As k ∈ ℤ, 2 2k ∈ ℤ, so 2n  is 2 times an integer; thus n  is even.   
 

Example 28 

 

Prove that if a  divides b  and b  divides c, then a  divides c. 
 

If a  divides b, then ∃m ∈ ℤ  s.t. b  =  am. Similarly, b  divides c  ⇒  ∃n ∈ 

ℤ  s.t. c  =  bn. The first equality gives bn  =  amn, and this together with 
the second equality yields,  

 

c  =  amn 
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As m, n ∈ ℤ, mn ∈ ℤ. Thus, a  divides c.  
 

Example 29 

 

Prove that if a  divides p  and a  divides q, then a  divides p  −  q. 
 

If a  divides p, then ∃m ∈ ℤ  s.t. p  =  am. Similarly, a  divides q  ⇒  ∃n ∈ 

ℤ  s.t. q  =  an. Then,  
 

p   −   q   =   am  −   an 
 

                                         p   −   q   =   a (m  −   n) 
 

Hence, as m, n ∈ ℤ, m  −   n  ∈ ℤ. Thus, a  divides p   −   q. 
 

Example 30 

 

Prove that if 
1

x  and 
2

x  are the 2 roots of the quadratic equation 2ax  +  

bx  +  c  =  0, then 
1

x   +   
2

x   =  −
b
a
 and 

1
x

2
x   =  

c
a
. 

 

According to the quadratic formula, the roots are given by,  

 

1
x   =   

2     4

2

b b ac
a

− + −
,       

2
x   =   

2     4

2

b b ac
a

− − −
 

 
Adding 

1
x  and 

2
x  gives,    

 

1
x   +   

2
x   =  

2 2     4       4

2

b b ac b b ac
a

− + − − − −
 

 

                                 =  
    

2

b b
a

− −
 

 

                                 =  −
b
a
 

 
Multiplying 

1
x  and 

2
x  gives, 
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1

x
2

x  =  
( ) ( )2 2

2

     4       4

4

b b ac b b ac

a

− + − − − −

 

 

                                 =  
2 2

2

  (   4 )

4

b b ac

a

− −
 

 

                                 =  
c
a
 

 

Indirect Proof 
 

Definition: 

 

An indirect proof is a proof that involves assuming the negation of the 
conclusion. 

 

There are 2 specific types of indirect proof that we will study. 

 
Proof by Contradiction 
 

Definition: 

 

An proof by contradiction is a way of proving A ⇒  B by assuming A and 

B∼  and showing that this leads to a contradiction (often, but not always, 

showing A∼ ). 

 
Example 31 

 

Prove that 2  is irrational. 

 

Let’s phrase this in the form A ⇒  B. A: x  =  2 ; B: x ∉ ℚ. Now assume 

the negation of B, i.e., suppose that x ∈ ℚ. Then ∃a, b ∈ ℤ (with b ≠ 0) 

s.t. x  =  
a
b
. It can be assumed that 

a
b
  is in simplest form (as otherwise, 

any common factors that a  and b  have can be cancelled out). The 2 
expressions for x  give,  
 

a
b
  =  2  
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 2a  =  2 2b  

 

Hence, 2a  is even. This implies that a  is even (see Example 37), i.e. ∃c ∈ 

ℤ  s.t. a  =  2c. Substituting this into the last expression gives,  
 

4 2c  =  2 2b  

 

 2b  =  2 2c  

 

Hence, 2b  is even. This implies that b  is even. But this contradicts the 
fact that a  and b  have no common factor. Hence, the initial assumption 

that 2  is rational is false, i.e. 2  is irrational. 

 

Example 32 

 

Prove that there are infinitely many prime numbers. 

 

Let us phrase this in the form A ⇒  B. A: T is the set of all prime 

numbers; B: T is an infinite set. The negation of B is the statement that T 

is a finite set, i.e., that there exist only a finite number of prime 

numbers. Let us call these prime numbers 
1
p , 

2
p , … , np . Next, consider 

the number N  defined by,  
 

N  =  
1
p  

2
p  … np   +   1 

 

By the Fundamental Theorem of Arithmetic, N  can be written as a 
product of primes. Hence, one of the ip  (1 ≤  i ≤  n) divides N. Thus, this 

ip  divides the difference (by Example 29) N  −  
1
p  

2
p  … np  =  1; but no 

prime number can divide 1. This is the desired contradiction.  

 

Example 33 

 

Prove that if a ∈ ℚ  and x  is irrational, then a  +  x  is irrational.   
 

A: a ∈ ℚ  and x  is irrational; B: a  +  x  is irrational. Assume the negation 
of B, i.e., that a  +  x  is rational. Then ∃s, t ∈ ℤ (with t ≠ 0) s.t.  

 

a  +   x  =   
s
t
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                 x  =   
s
t
  −   a 

 

                  x  =   
  s at
t
−

   

 

Hence, a ∈ ℚ and s, t ∈ ℤ imply that 
  s at
t
−

 =  x ∈ ℚ, which contradicts 

the assumed irrationality of x.  
 

The next example illustrates a very obvious result (which first year pupils 

often ask about !), but which, nonetheless, requires proof. 

 

Example 34 

 
Prove that there is no greatest whole number. 

 

A: � is the set of all whole numbers; B: There is no largest element of �. 

Assume the negation of B, i.e., that ∃  n  ∈ �  s.t. n  ≥  m  (∀m  ∈ �). 

However, n +  1 is a whole number, so n +  1 ∈ � and n +  1 >  n, 
contradicting the maximality of n. Hence, there is no largest whole 
number. 

 

Proof by Contrapositive 
 

Definition: 

 

A proof by contrapositive is a way of proving A ⇒  B by assuming A and 

B∼  and showing A∼ . 

 

Example 35 

 

Prove that, for x ∈ ℤ, if  13x  +   5  is even, then x  is odd. 
 

Assume that 13x  +   5  is even and x  is even. The latter implies that ∃n 
∈ ℤ  s.t. x  =  2n. Hence,   
 

13x  +   5   =   26n   +   5   

 

             13x  +   5   =   2(13n   +   2)  +   1 
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As n ∈ ℤ, 13n   +   2 ∈ ℤ, so 13x  +   5 is odd; but this contradicts the 

assumed evenness of 13x  +   5. So, x  is odd.  
 

Example 36 

 

Prove that if 3x  +  7x  >   0, then x  >   0. 

 

Assume that 3x  +  7x  >   0 and x  ≤   0. Then, 3x  ≤  0 and 7x  ≤   0. Thus,  
 

3x  +  7x   ≤   0  +   0 

 

                                          3x  +  7x   ≤   0 
 

This clearly violates the assumption that 3x  +  7x  >   0. Hence, x  >   0.  

 

Example 37 

 

Prove that, for y ∈ �, 2y  even ⇒  y  even. 

 

Assume that 2y  is even and y  is odd. Then ∃n ∈ ℤ  s.t. y  =  2n  +   1. 

Then,  
2y   =   (2n  +   1) 2  

 

         2y   =   4 2n   +   4n  +   1 

 

              2y   =   2(2 2n   +   2n)  +   1 

 

As n ∈ ℤ, 2 2n   +   2n ∈ ℤ, and so 2y  is clearly odd. However, this violates 

the assumed evenness of 2y . Thus, y  is even. 

 

Proof by Mathematical Induction 
 

This proof technique is used to show that a statement about natural 

numbers is true for all (or all apart from a finite subset of the) natural 

numbers.  

 

The statement to be proved is denoted by P(n).  
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Theorem (Principle of Mathematical Induction): 

 

The Principle of Mathematical Induction states that a statement P(n) is 
true for all natural numbers n  if (i) P(1) is true and for some k ∈ ℕ (ii) 

P(k) true ⇒  P(k  +   1) true. 

 

The first condition is known as the Base Case and the second is called 

the Inductive Step. P(k) is known as the Inductive Hypothesis. 
 

Sometimes the Base Case may not be for n  =  1.  

 

The ‘ domino analogy ’ is useful in understanding the Principle of 

Mathematical Induction (PMI). Think of the Base Case as knocking down 

the first domino in a chain of dominoes and the Inductive Step as saying  

‘ if one domino falls, then the one after it will also fall ’. Together, these 

conditions become ‘ all dominoes are knocked over ’ (statement is true for 

all n). For Base Case different from n  =  1, this analogy is easily adapted. 
 

Example 38 

 

Prove that 3 n  >   n  (∀ n ∈ ℕ). 
 

The statement in question is,  

 

P(n) : 3 n  >   n 
 
For the Base Case, evaluate each side of the inequality when n  =  1 and 

check to see if the inequality is true. 3 1  =  3 and this is clearly bigger 

than 1, i.e., 3 1  >  1. Hence, P(1) is true. Now assume that P(k) is true for 
some natural number k (we don’t pick a particular value, instead just 
working in general with k), so, 3 k  >   k (remember, this is the Inductive 
Hypothesis). Next, write down what we are required to prove (RTP),  

 

RTP : 3 1k +  >   k  +   1 

 

To prove this, start with the LHS of the inequality, and rewrite it so we 
can use the Inductive Hypothesis,  
 

3 1k +   =   3 k . 3   
 

                                                       >   k . 3            ( Inductive Hypothesis) 



Advanced Higher Notes (Unit 2)  Proof and Elementary Number Theory 

M Patel (April 2012) 16 St. Machar Academy 

 
              =   k   +   2k 

 
           ≥   k  +   2         

 
                                                        >   k   +   1 

 

                                ∴             3 1k +   >   k  +   1 

 

Hence, by assuming P(k) is true, i.e., 3 k  >   k, we have shown that 
P(k  +   1) is true, i.e., 3 1k +   >   k   +   1. Hence, the Inductive Step has 

been proven. In conclusion, as P(1) is true and P(k) true ⇒  P(k  +   1) true, 

by the PMI, P(n) is true ∀ n ∈ ℕ. 
  

Example 39 

 

Prove that 5 n  >   4 n  for all natural numbers n. 
 

P(n) : 5 n  >   4 n  

 

As 5  >   4, P(1) is true, so the Base Case holds. Assume that P(k) is true 
for some natural number k, i.e., 5 k  >   4 k . The RTP statement is, 

 

RTP : 5 1k +  >   4 1k +  

 

So,  

 

5 1k +   =   5 k . 5 

 

         >   4 k  . 5 

 

         >   4 k  . 4 

 

      =   4 1k +  

 

                                ∴             5 1k +   >   4 1k +  

 

Hence, we have shown that 5 k  >   4 k  ⇒   5 1k +  >   4 1k + , i.e., that P(k) true 
⇒  P(k  +   1) true. Together with the fact that P(1) is true, the PMI 

shows that 5 n  >   4 n  (∀ n ∈ ℕ). 
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Example 40 

 

Prove that 4 n  −   1  is divisible by 3 (∀ n ∈ ℕ). 
 

This can be rephrased as,  

 

P(n) : ∃p ∈ ℕ   s.t.  4 n  −   1  =  3p 
 

As 4 1  −   1  =  3  =  3 . 1, P(1) is true. Assume that P(k) is true for some 
natural number k, i.e., assume that ∃q ∈ ℕ  s.t. 4 k  −   1  =  3q. The RTP 
statement is, 

 

RTP : ∃r ∈ ℕ   s.t.  4 1k +  −   1  =  3r 
 

So,  

 

4 1k +  −   1   =   4 k  . 4  −   1 

 

          4 1k +  −   1   =   (3q  +   1) . 4  −   1 

 

         4 1k +  −   1  =   3 . 4q  +   4  −   1 

 

 4 1k +  −   1  =   3 (4q  +   1)   

 

Taking r  to be 4q  +   1 (which is a natural number, since q is), we have 
thus shown that P(k) true ⇒  P(k  +   1) true. Hence, as P(1) is true and 

P(k) true ⇒  P(k  +   1) true, the PMI implies that P(n) is true (∀ n ∈ ℕ).   
 

Example 41 

 

Prove that !n   >   2 n  for all natural numbers n  ≥   4. 
 

P(n) : !n   >   2 n  

 

The Base Case this time is n  =   4 (start by pinging the fourth domino !). 
The LHS is 4!  =  24. The RHS is 2 4   =   16. Hence, as 24  >   16, P(4) is 

true. Assume that P(k) is true for some natural number k, i.e., !k   >   2 k . 

The RTP statement is, 

 

RTP : (   1)!k +   >   2 1k +  
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So,  

 

(   1)!k +   =   (k  +   1) . !k  

 

                >   (k  +   1) . 2 k  

 

      ≥   2 . 2 k  

 

   =   2 1k +  

 

                       ∴             (   1)!k +   >   2 1k +  

 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒   

P(k  +   1) true imply, via the PMI, that P(n) is true (∀ n ∈ ℕ). 
 

Example 42 

 

Prove that  (ln )
n

n

d
x

dx
  =  (−1) 1n + (   1)!

n

n
x
−

  (∀ n ∈ ℕ). 

 

P(n) :  (ln )
n

n

d
x

dx
  =  (−1) 1n + (   1)!

n

n
x
−

 

 
Verifying the Base Case requires more effort this time. For n  =   1, the 

LHS becomes 
1

1
 (ln )

d
x

dx
  =    (ln )

d
x

dx
  and the RHS becomes (−1) 1 1+

1

(1  1)!

x
−

  =   (−1) 2
0!

x
   =   

1

x
. As  (ln )

d
x

dx
  =   

1

x
, P(1) is true. Assume 

that P(k) is true for some natural number k, i.e.,  (ln )
k

k

d
x

dx
  =  (−1) 1k +

(   1) !
k

k
x
−

. The RTP statement is, 

 

RTP : 
1

1
 (ln )

k

k

d
x

dx

+

+
  =  (−1) ( 1) 1k + +

1

((   1)  1)!
k

k
x +

+ −
. 

 

So,  

 
1

1
 (ln )

k

k

d
x

dx

+

+
  =     (ln )

k

k

d d
x

dx dx
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                               =   1 (   1)!
 ( 1)  k

k

d k
dx x

+ −
− 

 
 

 

                                =   (−1) 1k +  (   1)!k −
d
dx

kx −  

 

                                     =   (−1) 1k +  (   1)!k −  (−k 1kx − − ) 

 

                                         =   (−1)(−1) 1k + k . (   1)!k −  ( 1)kx − +  

 

                    =   (−1) 2k + !k  ( 1)kx − +  

 

               ∴             
1

1
 (ln )

k

k

d
x

dx

+

+
  =   (−1) ( 1) 1k + +

1

((   1)  1)!
k

k
x +

+ −
 

 
Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒   

P(k  +   1) true imply, via the PMI, that P(n) is true (∀ n ∈ ℕ). 
 

Example 43 

 

Prove that 2 n  >   3n  (∀ n  >   9). 
 

P(n) : 2 n  >   3n  
 

The Base Case is n  =   10 (ping the tenth domino to get going). The LHS is 

2 10   =   1 024 while the RHS is 310   =   1 000. So, as 1 024  >   1 000, P(10) 

is true. Assume that P(k) is true for some natural number k, i.e., 2 k  >   3k
. The RTP statement is,  

 

RTP : 2 1k +  >   3(   1)k +  

 

Before proceeding, note that 3(   1)k +  =  3k   +   3 2k   +   3k  +   1. Also, k  

>   9  ⇒   2k   >   9k  and 3k   >   9 2k . Now,  

 

2 1k +   =   2 k . 2 

 

        >   3k . 2 

 

                                                       =   3k   +   3k  
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                 >   3k   +   9 2k  
 

                              =   3k   +   3 2k   +   6 2k  
 

                              >   3k   +   3 2k   +   54k   
 

                                        =   3k   +   3 2k   +   3k  +   51k 
 

                                         >   3k   +   3 2k   +   3k  +   459 

 

                                     >   3k   +   3 2k   +   3k  +   1 
 

                                 ∴             2 1k +  >   3(   1)k +  

 
Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒   

P(k  +   1) true imply, via the PMI, that P(n) is true (∀ n ∈ ℕ). 
 

Example 44 

 

Prove that, for x ∈ ℝ, sin (x +  180n)°  =  (−1) n sin x °  (∀ n ∈ ℕ). 
 

P(n) : sin (x +  180n)°  =  (−1) n sin x ° 
 

When n  =   1, the LHS becomes sin (x +  180)°  =   sin x ° cos 180° +  cos x 
° sin 180°  =  sin x ° (−1) +   cos x ° (0)  =  −  sin x °. The RHS is clearly −  

sin x °. Thus, P(1) is true. Assume that P(k) is true for some natural 
number k, i.e., sin (x +  180k)°  =  (−1) k sin x °. The RTP statement is,  
 

RTP : sin (x +  180 (k  +   1))°  =  (−1) 1k + sin x ° 
 

Now,  

 

sin (x +  180(k  +   1))°  =  sin ((x +  180k)  +   180)° 
 
                                                       =   sin (x +  180k)° cos 180°  
                                                           +  cos (x +  180k)° sin 180°  
 

                         =   (−1) k sin x ° (−1)  

                                  +  cos (x +  180)° (0) 
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                   =   (−1) 1k + sin x ° 
 

   ∴             sin (x +  180(k  +   1))°  =   (−1) 1k + sin x ° 
 

Thus, P(k) true ⇒  P(k  +   1) true. So, P(1) is true and P(k) true ⇒   

P(k  +   1) true imply, via the PMI, that P(n) is true (∀ n ∈ ℕ). 
 

The Fundamental Theorem of Arithmetic 
 

The following theorem is a very important result in mathematics.  

 

Fundamental Theorem of Arithmetic: 

 

Every integer bigger than 1 can be written uniquely (apart from ordering) 

as a product of prime numbers. 

 

For example, 60  =   22 . 3 . 5  =   3 . 5 . 22 .    
 

The Fundamental Theorem of Arithmetic can be used to give an 

alternative proof of the irrationality of 2 .  

 

Example 45 

 

Using the same notation as in Example 31,  

 
2a  =  2 2b  

 

As a, b ∈ � , the Fundamental Theorem of Arithmetic says that a and b 
can be written as,  

 

a  =   12m 2

2

mp 3

3

mp … rm
rp ,   b  =   12n 2

2

nq 3

3

nq … sn
sq  

 
where all ip  and jq  are odd and all im , jn  are natural numbers. Using the 

relation above gives,  

 

                     122 m 22

2

mp 32

3

mp …
2 rm

rp   =    12 12 n + 22

2

nq 32

3

nq …
2 sn

sq  
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The Fundamental Theorem of Arithmetic says that these 2 factorisations 

must be identical (apart from possible reordering). Hence, r  =  s, and the 

jq  equal the ip . After possible relabelling of the jq , we then have, 

 

                     122 m 22

2

mp 32

3

mp …
2 rm

rp   =   12 12 n + 22

2

np 32

3

np …
2 rn

rp  

 
Thus, im  =  in  (2  ≤   i  ≤   r). Hence,  

 

                                                 122 m  =   12 12 n +  
 
Finally,  

 

       2
1

m   =   2
1
n   +   1 

 

This is a clear contradiction, as it says that an even number equals an odd 

number. Try proving that 3  is irrational by this method. Also, try  

‘ proving ’ that 4  is irrational and see where the argument breaks down. 

 

 
 
 


