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Sequences and Series 
 

Prerequisites: Recurrence relations; solving linear and quadratic       

                       equations; solving simultaneous equations.  

 

Maths Applications: Extending the Binomial Theorem; Maclaurin series. 

 

Real-World Applications: Quantum mechanics.  

  

Sequences and Series 
 

Definition: 

 

A (real) sequence is a function f  :  ∞  → ϒ . The values of a sequence are 

traditionally denoted nu  (the n 
th term) , which clearly equals f (n), 

whereas the sequence itself is denoted { }nu .   

 

A real sequence is just a list of real numbers in order. If ϒ  is replaced 

with ≤ , then we have a complex sequence. In this course, we will almost 
always deal with real sequences. 

 

Example 1 

 

1, 4, 9, 16, 25 . . . is a sequence. A function f  which generates this 

sequence is, f (n)  =  n 2 . 
 

When adding the terms of a sequence, we can choose to add up some or 

all of the terms.  

 

Series can thus be of 2 types: finite or infinite. 

  

Definition: 

 

A finite series is the sum of some terms of a sequence. 

 

The terms of a sequence added up from 1st to n th has a special name. 
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Definition: 

 

The sum to n terms (aka sum of the first n  terms or n th  partial sum) 
of a sequence is,   

 

nS   
def

=   

1

 
n

r

r

u
=

∑  

 
This definition is an example of a finite series (aka finite sum). 

 

Corollary: 

 

The n th  term of a sequence { }nu  is given by,  

 

nu 1+
  =   1nS +

  −   nS  

 
Example 2 

 

If the sum of the first 13 terms of a sequence is 37 and the sum of the 

first 14 terms is 39, find the value of u14 . 

 

u
14   =  S14   −   S13  

 
      =  39  −   37 

 

                                                             =  2   
 

Definition: 

 

An infinite series is the sum of all the terms of a sequence. 

 

Definition: 

 

The sum to infinity  (aka infinite sum) of a sequence is the limit (if it 

exists) as n → ∞  of the n th partial sums, i.e., 
 

S
∞
  

def

=   lim
n→∞

nS  
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Definition: 

 

An infinite series converges (aka is summable) if S
∞
 exists; otherwise, 

the series diverges (aka is not summable aka limit does not exist). 

 
Traditionally, the first term of a sequence is denoted by a. There are 2 
important types of sequences we will study in depth. They are defined by 

recurrence relations. 

 

Arithmetic Sequences and Series 
 

Definition: 

 

An arithmetic sequence is one in which the difference (aka common 

difference d ) of any 2 successive terms is the same,  
 

d   
def

=   1nu +
   −    nu   

 
Example 3 

 

Verify that 37, 26, 15, 4, −7, . . .  is an arithmetic sequence.   

 
We need to check that the difference between any 2 successive terms is 

the same. 
2
u   −   

1
u   =  −11  and 3

u   −   
2
u   =  −11. Hence, as successive 

differences are the same, the sequence is an arithmetic sequence.  

 

n th term 
 

Theorem: 

 

The n th  term of an arithmetic sequence is given by, 
 

nu   =   a  +   (n  −   1) d           (a ∈ ϒ  , d  ∈ ϒ  ∖{0}) 

 
If d  =  0, then we end up with a constant sequence a, a, a, . . . , which is 
not particularly interesting. 
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Example 4 

 

Find a formula for the n th  term of the arithmetic sequence that starts  
12, 19, 26, 33, 40, . . .  . 

 

The common difference is easily seen to be d  =  7. The first term is 12. 

Hence,  

 

nu   =   12  +   (n  −   1) 7 

 

                                        nu   =   12  +   7n  −   7 

 

                                        nu   =   7n  +   5   

 

Example 5 

 

An arithmetic sequence has second term 4 and seventh term 19. Find a 

formula for the n th  term of this sequence.  
 

We have,  

2
u   =   a  +   (2  −   1) d   =  4 

 
 7
u   =   a  +   (7  −   1) d   =  19 

 

which become, 

 

  a   +       d    =   4 
 

                                              a   +    6d    =   19 

 

Solving these simultaneous equations gives d   =  3 and a   =  1. Thus,  

 

nu   =   1  +   (n  −   1) 3 

 

                                         nu   =    3n   −   2   

 

Example 6 

 

An arithmetic sequence has first term 6, common difference 3 and nu   =  

72. Find the value of n.  
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                          72  =   6  +   (n  −   1) 3 

 

n  −   1   =   22 

 

        n   =   23 

 

Example 7 

 

An arithmetic sequence has first term −3 and 3
u   =  14. Find the value of 

d. 
 

                     14  =   −3  +   (3  −   1) d 
 

d   =   

17

2
 

 

Example 8 

 

An arithmetic sequence has common difference 9 and 16
u  =  68. Find the 

value of a. 
 

68  =   a  +   (15)9 

 

                                             68  =   a  +   135 

 

                                               a  =   −67 

 

Sum to n Terms 
 

Definition: 

 

The sum to n  terms of an arithmetic sequence is given by,  
 

nS  =    (2   (   1) )
2

n
a n d+ −  

 

It is clear that this sum is a quadratic in n. 
 

 



Advanced Higher Notes (Unit 2)  Sequences and Series 

M Patel (April 2012) 6 St. Machar Academy 

Corollary: 

 

The sum to n  terms of an arithmetic sequence can always be written as,  
 

nS  =  P n 2  +  Q n     (P  ∈ ϒ  ∖{0}, Q ∈ ϒ ) 

 

The definition gives the main formula to use, but the corollary can be 

useful too.  

 

Example 9 

 

Find 
12
S  for the arithmetic sequence that starts  5, 8, 11, 14, 17, . . .  . 

 

For this sequence, d   =  3 and a  =  5. With n   =  12, we have,  

 

12
S  =   

12
 (2(5)  (12  1)3)

2
+ −  

 
                                                 =   6 (10  33)+  

 

                                                 =   258 

 

Example 10 

 

An arithmetic sequence has first term 2 and common difference 3. Find 

the smallest value of n  for which nS  >  43. 

 

                                       (2(2)  (   1)3)
2

n
n+ −   >   43 

 

        (3   1)n n +   >   86 

 

                                     3n 2   +   n   −   86  >   0      
 

Solving the associated quadratic equation 3n 2   +   n   −   86  =   0 gives n  
=  −  5 · 52…  and n  =  5 · 19… . As n  ∈ ∞ , this means that n  ≥  6.   
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Example 11 

 

An arithmetic sequence has first term 12 and 14
S  =  238. Find the 

common difference. 

 

                             

14
 (2(12)  (14  1) )

2
d+ −    =   238 

 

 24  +   13d    =   34 
 

            13d   =   10 
 

                 d   =   
10

13
 

 

Example 12 

 

An arithmetic sequence has common difference −8 and S8  =  16. Find the 

first term. 

 

a
8
 (2   6( 8))

2
+ −   =  16 

 

2a  −   48   =   4 
 

a   =   26 
 

Clearly, adding the terms of an arithmetic sequence will make successive 

partial sums larger and larger in magnitude. This leads to the following.   

 

Theorem: 

 

The sum to infinity of an arithmetic sequence does not exist. 

 

Some people say that the sum is infinite. Those people are not writing 

these notes. 
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Geometric Sequences and Series 
 

Definition: 

 

A geometric sequence is one in which the ratio (aka common ratio r ) of 
any 2 successive terms is the same,  

 

r   
def

=  1n

n

u

u
+     

 

Example 13 

 

Verify that 3, 6, 12, 24, 48, . . .  is a geometric sequence.   

 
We need to check that the ratio of any 2 successive terms is the same. 

u

u
2

1

  =  2  and 
u

u
3

2

  =  2. Hence, as successive ratios are the same, the 

sequence is. 

 

n th term 
 

Theorem: 

 

The n th  term of a geometric sequence is given by, 
 

nu   =  a r 1n −
      (a  ∈ ϒ  ∖{0}, r  ∈ ϒ  ∖{0, 1}) 

 
If a  =  0 or r  =  0, then we end up with the trivial sequence 0, 0, 0, . . . , 

whereas if r  =  1, we end up with a constant sequence a, a, a, . . . , neither 
of which are interesting.   

 

Example 14 

 

Find a formula for the n th  term of the geometric sequence that starts  
400, 200, 100, 50, 25, . . .  . 

 

The common ratio is easily seen to be r  =  

1

2
. The first term is 400. 

Hence,  
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nu   =   400 

n 1
1

2

−

 
 
 

  

                            
Example 15 

 

A geometric sequence has third term 8 and fifth term 32. If the common 

ratio is negative, find a formula for the n th  term of this sequence.  
 

We have,  

u
3   =   a r 2  =  8 

 
 u3   =   a r 4  =  32 

 

Dividing the first equation by the second gives (and cancelling a, as it’s 
non-zero) 

 

  r 2  =  4 
 

As r  <   0, r  =  −2. Substituting this back into either of the above 2 

equations gives a  =  4. The n th term formula is thus,  
 

nu   =   4 . ( )
−

−
n 1

2  

 

Example 16 

 

A geometric sequence has first term 2, common ratio 4 and nu   =  128. 

Find the value of n.   
 

128  =  2 . 4 n −1  

 

                                                 4n −1   =  64  

 

                                                 4n −1   =  4 3   

 

n  =  4 
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Example 17 

 

A geometric sequence has first term 10 and 3
u  =  5. If r  >   0, find the 

value of r. 
 

10 r 2  =  5 
 

      r 2  =  
1

2
 

 

       r   =  
1

2
 

 

Example 18 

 

A geometric sequence has common ratio 2 and u6   =  1 024. Find the value 

of a. 
 

a . 52    =   1 024 
 

 32 a   =  1 024 
 

                                                    a   =  32 
 

Sum to n Terms 
 

Theorem: 

 

The sum to n  terms of a geometric sequence is given by, 
 

nS   =   

 (1  )

1  

na r
r

−

−
 

 

Notice that the denominator won’t be 0, as r  cannot equal 1. 
 

Example 19 

 

Find 8
S  for the sequence 6, 2, 

2

3
, 
2

9
, . . .  . 
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The sequence is clearly a geometric one, with a   =  6 and r   =  
1

3
. Hence,  

 

8
S   =  

n

/

  
 −     

1
6 1  

3

2 3
   

 

                                          8
S   =  9 

n  
 −  
   

1
1  

3
 

 

Example 20 

 

A geometric sequence has first term 1 and common ratio 4. Find the 

smallest value of n  for which nS  >  2 649. 

 
n

−

−

1  4

1  4
  >   2 649 

 

                                            −
1

3
( n

−1  4 )  >   2 649 

 

    
n

−1  4   <   −7 947 

 

          
n4   >   7 948 

 

     n . ln 4   >   ln  7 948 
 

              n   >   
ln 7 948

ln 4
 

 

              n   >   6 · 471 89 
 

As n  ∈ ∞ , n  =  7.  

 

Example 21 

 

A geometric sequence has first term 7 and 
2
S  =  6 . Find the common 

ratio. 
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27 (1  )

1  

r
r

−

−
   =   6 

 

                                         

7 (1  )(1  )

1  

r r
r

− +

−
   =   6 

 

As r  ≠  1, we can cancel (1  −   r)  to get,     
 

  7 (1  +   r)  =   6 

 

        1  +   r   =   

6

7
 

 

                   r   =   −
1

7
 

 

Example 22 

 

A geometric sequence has common ratio 
1

5
 and 3

S   =  

1

25
 . Find the first 

term. 

 

3

1
 1  

5

4 5

a

/

  
−  

  
   =  

1

25
 

 

                                                

1
5  1  

125

4

a
 

− 
 

   =  

1

25
 

 

        

124
5  

125

4

a
 
 
 

   =  

1

25
 

 

                

31  

25

a
   =  

1

25
 

 

                    a   =  

1

31
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Sum to Infinity  
 

Theorem: 

 

The sum to infinity of a geometric sequence exists when r  <   1 and is 

given by, 

 

S
∞
  =   

 

1  

a
r−
 

 
Example 23 

 

Determine whether the geometric sequence 1, −
3

2
, 
9

4
, −
27

8
, . . .  has a 

sum to infinity. Justify your answer. 

 

The common ratio is −
3

2
. Hence, as r  does not satisfy −1  <   r  <   1, ∃

S
∞
. 

 

Example 24 

 

Find the sum to infinity of the geometric sequence 3, 2, 
4

3
, 
8

9
, . . .  . 

 

The first term is 3 and the common ratio is 
2

3
. As −1  <   

2

3
  <   1, the sum 

to infinity exists. Hence,  

 

S
∞
  =   

/
3 

1  2 3−
 

 

                                            S
∞
  =   

9 

3  2−
 

 

                                            S
∞
  =   9 

Example 25 

 
Given that a geometric sequence has S

∞
  =   56 and a   =   19, find the 

common ratio. 
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r
19 

1  −
   =   56 

 

 1  −   r   =   

19

56
 

 

                  r   =   1  −   
19

56
 

 

          r   =   

37

56
 

 
Example 26 

 

Given that a geometric sequence has S
∞
  =   

3

7
  and r  =  

1

7
 , find the first 

term. 

 

a
/
 

1  1 7−
   =   

3

7
 

 

           

a7  

6
   =   

3

7
 

 

                  a    =   

18

49
 

 

Expansion of 1/(1 – f(x)) 
 

There is an interesting link between infinite series and what may be 

viewed as an extension of the Binomial Theorem to the case n  =  −1. 

 

Definition: 

 

A power series is an expression of the form,  
 

i
i

i

a x
  0

 
∞

=

∑   =  0
a   +   

1
a x   +   

2
a 2x  +   3

a 3x   +   . . .     ( ia ∈ϒ ) 

 

The aforementioned link is the content of the next theorem. 
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Theorem: 

 

If x  <   1, then, 

 

(1  −   x) 1−   =  

1 

1  x−
  =  1  +   x  +   

2x  +   
3x   +   . . .  

def

=   
i

i

x
  0

 
∞

=

∑  

 

Example 27 

 

Expand (1  −   2x) 1− , stating the range of values of x for which the 
expansion is valid.  

 

(1  −   2x) 1−   =  

x
1 

1  (2 )−
  =  1  +   2x  +   x 2(2 )  +   x 3(2 )   +   …  

 

                                            =  1  +   2x  +   4 2x   +   8 3x   +   …  

 

The expansion is valid for x2  <   1, i.e. for x  <   
1

2
. 

 

Example 28 

 

Write  
x

1 

1  3+
  in the form 

  0

 ( 1)i i i

i

k x
∞

=

−∑ , stating the value of k. 

 

x
1 

1  3+
  =   

x
1 

1  ( 3 )− −
   =   

i

i

x
  0

 ( 3 )
∞

=

−∑   

 

                                                 =   
i i

i

x
  0

 ( 3)
∞

=

−∑  

 

                                                 =   
i i i

i

x
  0

 ( 1) 3
∞

=

−∑  

 

The value of k  is 3. 
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Example 29 

 

Write 
x

1 

2  5+
  in the form  p

  0

 ( 1)i i i

i

k x
∞

=

−∑ , stating the range of validity 

of the expansion as well as the values of p  and k. 
 

x
1 

2  5+
  =  

1

2 x
1 

1  (5/2)

 
 

+ 
 

 

                      =  

1

2 x
1 

1  ( 5 /2)

 
 

− − 
 

 

                 =  

1

2

i

i

x

  0

5
 

2

∞

=

 
− 
 ∑  

 

The expansion is valid for 
x5
2

−  <   1, i.e. for x  <   
2

5
. Continuing,  

 

         

x
1 

2  5+
  =   

1

2

i

i i

i

x

  0

5
 ( 1)

2

∞

=

 
−  

 ∑  

 

Thus, p  =  

1

2
 and k  =  

5

2
.    

 

Example 30 

 

Expand 
x

2 

2  14 sin 3+
, stating the range of validity of the expansion, 

and write it in the form 
  0

 ( 1) (sin 3 )i i i

i

k x
∞

=

−∑ , stating the value of k. 

 

 

x
2 

2  14 sin 3+
  =  

x
1 

1  7 sin 3+
 

 

                              =  

x
1 

1  ( 7 sin 3 )− −
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                              =  1 +  x( 7 sin 3 )−  +  x 2( 7 sin 3 )− +  x 3( 7 sin 3 )−  +  …   

 

                              =  1  −   x7 sin 3   +   x249 sin  3   −   x3343 sin  3   +  …  

 

which is valid for  7 sin 3x−   <   1, i.e. for  xsin 3   <   
1

7
. In terms of the 

infinite sum,   

 

x
2 

2  14 sin 3+
  =  

i i i

i

x
  0

 ( 1) 7 (sin 3 )
∞

=

−∑  

 

with k  =  7. 

 

Definition: 

 

The number e is, 

 

  e   
def

=    lim
n→∞

 
1

1  

n

n

 
+ 

 
  =  2  +   

1

2 !
 +   

1

3 !
 +   . . .  =  

b
b

  0

1
 
 !

∞

=

∑    

 

Theorem: 

 

The exponential function is, 

 

ex    
def

=    lim
n→∞

 1  

n
x
n

 
+ 

 
 

 
Example 31 

 

State the exact value of lim
n→∞

 
7

1  

n

n

 
+ 

 
 and write it to 8 significant 

figures. 

 

The exact value is e 7 . To 8 s.f., a calculator gives 1 096 · 633 2. 
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Finite Sums 
 

Some special types of finite sums must be known. 

 

Theorem: 

 

The sum to n  terms of the number 1 is,  
 

n

r   1

 1 

=

∑  =   n 

 

This result is supposed to be very obvious; adding up the number 1 n  
times gives the answer n. 
 

Example 32 

 

Find an expression for 

n

r   1

 3 

=

∑ . 

 
n

r   1

 3 

=

∑   =    3

n

r   1

 1 

=

∑   

 

     =    3n 
 

The next result tells us what happens when we add up the sum of the 

first n  natural numbers.  
 

Theorem: 

 

The sum of the first n  natural numbers is,  
 

n

r

r
  1

  

=

∑ =   

1

2
n (n  +   1) 
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Example 33 

 

Find an expression for 

n

r

r
  1

 8

=

∑ . 

 

                                        

n

r

r
  1

 8

=

∑   =   8 . 

n

r

r
  1

  

=

∑  

 

                      =   8 . 
1

2
n (n  +   1)  

 

                 =   4 n (n  +   1) 

 

The above 2 finite sums are often used in the following type of example. 

 

Example 34 

 

Express 

n

r

r
  1

 (7   5)

=

−∑  in the form P n 2  +   Q n, stating the values of P  

and Q. 
 

n

r

r
  1

 (7   5)

=

−∑   =   

n

r

r
  1

 7

=

∑   −   

n

r   1

 5 

=

∑      

 

                            =   7 

n

r

r
  1

 

=

∑   −   5 

n

r   1

 1 

=

∑   

 

                       =   
7

2
n (n  +   1)  −   5n 

 

                        =   
7

2
n 2   +   

7

2
n  −   5n 

 

             =   
7

2
n 2   −   

3

2
n 

 

Hence, P  =  
7

2
  and  Q  =  −

3

2
.     
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Other Finite Sums 
 

Example 35 

 

Express −  3  +   10  −   17  +   24  −  . . . −   59 in the form 
n

r

r

ar b
  1

 ( 1)  (   )

=

− +∑ , stating the values of a, b  and n.  

 

The r( 1)−  serves to provide the alternating plus and minus signs. The 

ar b  +  is indicative of an arithmetic sequence. Ignoring negatives, the 

differences are 7 and the first term is 3. Hence, the n th term is given by 
3  +   (n  −   1)7  =   7n  −   4. Counting up from 3 to 59 in 7’s shows that n  
=   9. Thus, the required expression for the finite sum is,  

 

r

r

r
9

  1

 ( 1)  (7   4)

=

− −∑  

 

Therefore, a  =   7, b  =  −4 and n  =   9. 
 

 
 

 

 

 

 


