Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Specimen Question Paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on marketing@sqa.org.uk.
Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

Part One: General Marking Principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question. The marking schemes are written to assist in determining the 'minimal acceptable answer' rather than listing every possible correct and incorrect answer.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
(b) Marking should always be positive, ie marks should be awarded for what is correct and not deducted for errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Bad form
- Repeated error within a question

Part Two: Specific Marking Instructions for each question

Question		Marking scheme Give one mark for each -	Max mark	Illustrations of evidence for awarding a mark at each •
1		Ans: $\quad \mathbf{8 5} \cdot \mathbf{1 6 9}$ miles - ${ }^{1}$ multiplying factor - 2 power of 3 - ${ }^{3}$ answer	3	-1 1 -15 $\bullet^{2} \quad 1 \cdot 15^{3}$ -3 $85 \cdot 169$ or $85 \cdot 17$ or $85 \cdot 2$ or 85
2		Ans: $\quad 1.65 \times 10^{9}$ - ${ }^{1}$ correct method - ${ }^{2}$ answer	2	- ${ }^{1} \quad 3 \times 10^{5} \times 5 \cdot 5 \times 1000$ - $^{2} \quad 1.65 \times 10^{9}$
3	a	Ans: $\quad \mathbf{b}-\mathbf{a}$ -1 answer	1	${ }^{1}{ }^{1} \mathbf{b}-\mathbf{a}$
3	b	Ans: 2(b-a) - ${ }^{1}$ answer	1	-1 $2(b-a)$
4		Ans: - 4 - ${ }^{1}$ correct substitution into equation - ${ }^{2}$ state value of k	2	$\begin{aligned} & \bullet-16=k \times 2^{2} \\ & \bullet^{2}-4 \end{aligned}$
5		Ans: $\quad 9.8 \mathrm{~cm}$ - ${ }^{1}$ correct application of cosine rule for PR^{2} - ${ }^{2}$ correct value for PR^{2} -3 answer	3	- $8^{2}+3^{2}-2 \times 8 \times 3 \times \cos 120^{\circ}$ - $2 \quad 97$ - ${ }^{3}$ 9•(488.....)

6		Ans: $870 \mathrm{~cm}^{\mathbf{3}}$ -1 know how to calculate volume of toy -2 substitute correctly into formula for volume of hemisphere -3 substitute correctly into formula for volume of cone - calculate volume correctly - 5 round to 2 significant figures	5	-1 add volume of cone and volume of hemisphere - $2 \quad \frac{1}{2} \times \frac{4}{3} \times \pi \times 6^{3}$ ($=452 \cdot 389 \ldots$) - ${ }^{3} \quad \frac{1}{3} \times \pi \times 6^{2} \times 11$ ($=414 \cdot 690 \ldots$...) - ${ }^{4}$ 867•079... - 5870
7		Ans: $\quad £ 387 \cdot 50$ - ${ }^{1}$ know that $120 \%=465$ - ${ }^{2}$ know to divide 465 by $1 \cdot 2$ - ${ }^{3}$ answer	3	- $120 \%=465$ - ${ }^{2} 100 \%=465 \div 1 \cdot 2$ - ${ }^{3} \quad 387 \cdot 50$
8	a	Ans: \quad mean $=21$ standard deviation $=2.1$ - ${ }^{1}$ calculate mean - ${ }^{2}$ start to calculate standard deviation -3 answer	3	-1 21 - 2 as far as $\Sigma(x-\bar{x})^{2}=22$ or $\Sigma x^{2}=2668$ - 2.0976
8	b	Ans: two valid statements - ${ }^{1}$ compare means - ${ }^{2}$ compare standard deviations	2	-1 Machine A, on average, packs more sprouts into a bag - ${ }^{2}$ The number of sprouts packed in a bag by Machine A is more consistent

9		Ans: $\mathbf{4 \cdot 1 4 7 2}$ litres -1 find linear scale factor -2 find volume scale factor -3 calculate volume	3	- $\frac{36}{15}(=2 \cdot 4)$ - $2\left(\frac{36}{15}\right)^{3}\left(=2 \cdot 4^{3}=13 \cdot 824\right)$ $\cdot^{3} 4 \cdot 1$ or $4 \cdot 15$ or $4 \cdot 147$ or $4 \cdot 1472$
10	a	Ans: half of [2-(-4)] graph moved down 1 - ${ }^{1}$ correct explanation of 3 -2 correct explanation of -1	2	-1 half of [2-(-4)], or equivalent - ${ }^{2}$ graph of $y=\cos x^{\circ}$ moved down 1 , or equivalent
10	b	Ans: $\quad \mathbf{7 0 . 5} \mathbf{5}^{\circ}, \mathbf{2 8 9} \cdot 5^{\circ}$ -1 form equation -2 rearrange equation -3 find one value - 4 find second value	4	- $13 \cos x^{\circ}-1=0$ - ${ }^{2}$ as far as $\cos x^{\circ}=\frac{1}{3}$ - ${ }^{3} \quad 70.5$ -4 $289 \cdot 5$
11	a	Ans: $1536 \mathrm{~cm}^{2}$ - ${ }^{1}$ correct fraction of area - ${ }^{2}$ correct formula - ${ }^{3}$ all calculations correct	3	$\begin{array}{ll} \bullet & \frac{110}{360} \\ \bullet^{2} & \frac{110}{360} \times \pi \times 40^{2} \\ \bullet^{3} & 1535 \cdot 8 \ldots \end{array}$
11	b	Ans: 175 cm - ${ }^{1}$ correct fraction of circumference - ${ }^{2}$ correct formula -3 all calculations correct	3	$\begin{array}{ll} \bullet & \frac{250}{360} \\ \bullet & \frac{250}{360} \times \pi \times 80 \\ \bullet^{3} & 174 \cdot 5 \ldots \end{array}$

12		Ans: $\quad p>\frac{1}{3}$ -1 know to use discriminant -2 correct values of a, b and c - ${ }^{3}$ form correct inequation - ${ }^{4}$ solve inequation	4	-1 $b^{2}-4 a c$ -2 $\quad a=p, b=-2, c=3$ - $3-12 p<0$ - ${ }^{4} \quad p>\frac{1}{3}$
13	a	Ans: $\quad 29^{\circ}$ - ${ }^{1}$ calculate angle CDH -2 correct use of sine rule -3 rearrange equation - ${ }^{4}$ find angle CDH	4	$\begin{aligned} & \bullet 130^{\circ} \\ & \bullet^{2} \frac{50}{\sin \mathrm{CDH}}=\frac{79}{\sin 130^{\circ}} \\ & \bullet^{3} \quad \sin \mathrm{CDH}=\frac{50 \sin 130^{\circ}}{79} \\ & \bullet^{4} \quad 29^{\circ} \end{aligned}$
13	b	Ans: $\quad 249^{\circ}$ - ${ }^{1}$ use alternate angle -2 find correct bearing	2	-1 angle alternate to given bearing $=40^{\circ}$ - 249°

Total Marks for Paper 2 - 50
[END OF SPECIMEN MARKING INSTRUCTIONS]

