\square

Date - Not applicable
Duration - 1 hour and 30 minutes

Fill in these boxes and read what is printed below.
Full name of centre

Forename(s)

Date of birth
Day

Month

Year

Town

Surname

Number of seat

Scottish candidate number

Total marks - 50

You may use a calculator.

Attempt ALL questions.
Use blue or black ink. Pencil may be used for graphs and diagrams only.
Write your working and answers in the spaces provided. Additional space for answers is provided at the end of this booklet. If you use this space, write clearly the number of the question you are attempting.
Square-ruled paper is provided at the back of this booklet.
Full credit will be given only to solutions which contain appropriate working.
State the units for your answer where appropriate.
Before leaving the examination room you must give this booklet to the Invigilator. If you do not, you may lose all the marks for this paper.

FORMULAE LIST

The roots of

$$
a x^{2}+b x+c=0 \text { are } x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right.}}{2 a}
$$

Sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text { or } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle: $\quad A=\frac{1}{2} a b \sin C$

Volume of a sphere:

$$
V=\frac{4}{3} \pi r^{3}
$$

Volume of a cone:
$V=\frac{1}{3} \pi r^{2} h$

Volume of a pyramid:

$$
V=\frac{1}{3} A h
$$

Standard deviation: $s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\Sigma x^{2}-(\Sigma x)^{2} / n}{n-1}}$, where n is the sample size.

She increases her distance by 15% each week for the next three weeks. How many miles will she cycle in the third week?
2. There are 3×10^{5} platelets per millilitre of blood.

On average, a person has $5 \cdot 5$ litres of blood.
On average, how many platelets does a person have in their blood? Give your answer in scientific notation.

Vectors \mathbf{a} and \mathbf{b} are represented by $\overrightarrow{O A}$ and $\overrightarrow{O B}$ respectively.

(a) Express $\overrightarrow{\mathrm{AB}}$ in terms of \mathbf{a} and \mathbf{b}.
(b) Express $\overrightarrow{\mathrm{OC}}$ in terms of \mathbf{a} and \mathbf{b}.
4. The graph with equation $y=k x^{2}$ is shown below.

The point $(2,-16)$ lies on the graph.
Determine the value of k.
5. In triangle $\mathrm{PQR}, \mathrm{PQ}=8$ centimetres, $\mathrm{QR}=3$ centimetres and angle $\mathrm{PQR}=120^{\circ}$.

Calculate the length of PR.
6. A child's toy is in the shape of a hemisphere with a cone on top, as shown in the diagram.

The toy is 12 centimetres wide and 17 centimetres high.
Calculate the volume of the toy.
Give your answer correct to 2 significant figures.

This is an increase of 20% on last year's payment.
How much did Adèle pay last year?
8. A frozen food company uses machines to pack sprouts into bags.

A sample of six bags is taken from Machine A and the number of sprouts in each bag is counted.

The results are shown below.
$\begin{array}{llllll}23 & 19 & 21 & 20 & 19 & 24\end{array}$
(a) Calculate the mean and standard deviation of this sample.
(b) Another sample of six bags is taken from Machine B.

This sample has a mean of 19 and a standard deviation of $2 \cdot 3$.
Write down two valid comparisons between the samples.
9. Screenwash is available in two different sized bottles, 'Mini' and 'Maxi'. The bottles are mathematically similar.

Calculate the volume of the 'Maxi' bottle.
10. Part of the graph of $y=a \cos x^{\circ}+b$ is shown below.

(a) Explain how you can tell from the graph that $a=3$ and $b=-1$.
(b) Calculate the x-coordinates of the points where the graph cuts the x-axis. The radius of the paper circle is 40 centimetres. Angle AOB is 110°.

(a) Calculate the area of the sector removed from the circle.
(b) Calculate the circumference of the base of the cone.
12. Find the range of values of p such that the equation $p x^{2}-2 x+3=0, p \neq 0$, has no real roots.
13. A yacht sails from a harbour H to a point C , then to a point D as shown below.

C is 50 kilometres due east of H .
D is on a bearing of 040° from C and is 79 kilometres from H .
(a) Calculate the size of angle CDH.
(b) Hence, calculate the bearing on which the yacht must sail to return directly to the harbour.

