Marking instructions for each question

Qu	Generic scheme	Illustrative scheme	Max mark
1	Ans: $7 \frac{3}{5}$ -1 start simplification and know how to divide fractions - ${ }^{2}$ consistent answer in simplest form	$\begin{aligned} & \bullet \frac{19}{8} \times \frac{16}{5} \\ & \bullet 2 \frac{3}{5} \text { or } \frac{38}{5} \end{aligned}$	2
2	Ans: $x>-5$ - 1 expand bracket -2 collect like terms - ${ }^{3}$ solve for x	-1 $11-2-6 x<39$ $\bullet^{2}-6 x<30$ or $-30<6 x$ -3 $x>-5$ or $-5<x$	3
3	Ans: $7 \sqrt{2}$ -1 add vectors correctly $\bullet{ }^{2}$ know how to find magnitude - ${ }^{3}$ find magnitude as a surd in its simplest form	$\begin{aligned} & \cdot\left(\begin{array}{r} 9 \\ -1 \\ -4 \end{array}\right) \\ & \cdot{ }^{2} \sqrt{9^{2}+(-1)^{2}+(-4)^{2}} \\ & \cdot 7 \sqrt{2} \end{aligned}$	3
4	Ans: $a=5$ - 1 know to substitute $(-3,45)$ into $y=a x^{2}$ -2 solve equation for a	-1 $45=a(-3)^{2}$ or equivalent - $2 a=5$	2
5	Ans: two real and distinct roots -1 find discriminant -2 state nature of roots	-1 $53 \quad\left[5^{2}-4 \times 7 \times(-1)\right]$ -2 two real and distinct roots	2

Question		Generic scheme	Illustrative scheme	Max mark
6	(a)	Ans: $W=20 A+40$ -1 gradient -2 substitute gradient and a point into $y-b=m(x-a)$ or $y=m x+c$ - ${ }^{3}$ state equation in terms of W and A and in simplest form (remove any brackets and collect constants)	-1 $\frac{240}{12}$ or equivalent -2 $y-100=\frac{240}{12}(x-3)$ or $y-340=\frac{240}{12}(x-15)$ or $100=\frac{240}{12} \times 3+c$ or $340=\frac{240}{12} \times 15+c$ - ${ }^{3} W=20 A+40$ or equivalent	3
6	(b)	Ans: $20 \times 12+40=280 \mathrm{~kg}$ -1 calculate weight using equation from part (a)	- $120 \times 12+40=280 \mathrm{~kg}$ stated explicitly	1
7	(a)	Ans: median $=19 \cdot 5$, SIQR $=4 \cdot 5$ -1 find median - 2 find quartiles -3 calculate semi-interquartile range	${ }^{1} 19.5$ -2 17 and 26 -3 4.5	3
7	(b)	Ans: valid comments -1 compare medians -2 compare semi-interquartile ranges	-1 On average the second round's scores are higher -2 The second round's scores are more consistent.	2

Qu	tion	Generic scheme	Illustrative scheme	Max mark
8	(a)	Ans: $5 a+3 c=158.25$ - ${ }^{1}$ construct equation	-1 $5 a+3 c=158 \cdot 25$	1
8	(b)	Ans: $3 a+2 c=98$ -1 construct equation	-1 $3 a+2 c=98$	1
8	(c)	Ans: Adult ticket costs $£ 22.50$ Child ticket costs $£ 15 \cdot 25$ - 1 evidence of scaling - 2 follow a valid strategy through to produce values for a and c - ${ }^{3}$ calculate correct values for a and c - ${ }^{4}$ communicate answers in money	$\begin{aligned} 10 a+6 c & =316 \cdot 50 \\ 9 a+6 c & =294 \end{aligned}$ ${ }^{2}$ values for a and c -3 $a=22 \cdot 5$ and $c=15 \cdot 25$ -4 Adult $£ 22 \cdot 50$ Child $£ 15.25$	4
9		Ans: 600000 - ${ }^{1}$ know that $80 \%=480000$ -2 begin valid strategy -3 answer	- $180 \%=480000$ - ${ }^{2} 10 \%=60000$ or equivalent -3 600000	3
10		Ans: $\frac{2 \sqrt{5}}{5}$ -1 correct substitution -2 correct answer	$\begin{aligned} & \bullet \frac{2}{\sqrt{5}} \\ & \bullet 2 \frac{2 \sqrt{5}}{5} \end{aligned}$	2

Question		Generic scheme	Illustrative scheme	Max mark
11	(a)	Ans: $\mathbf{b}-\mathbf{a}$ -1 correct answer	-1 $^{1} \mathbf{b}-\mathbf{a}$ or $-\mathbf{a}+\mathbf{b}$	1
11	(b)	Ans: 2(b-a) -1 correct answer	${ }^{1} 2(\mathbf{b}-\mathbf{a})$ or $2(-\mathbf{a}+\mathbf{b})$	1
12		Ans: $a=4, b=3$ -1 ${ }^{1}$ state the value of a ${ }^{\bullet}$ ² state the value of b	$\left\lvert\, \begin{array}{ll} \bullet & 4 \\ \bullet & 3 \end{array}\right.$	2
13	(a)	Ans: $(x-4)^{2}+3$ -1 correct bracket with square -2 complete process	- ${ }^{1}(x-4)^{2}$ - ${ }^{2}(x-4)^{2}+3$	2
13	(b)	Ans: -1 coordinates of turning point correct -2 sketch parabola with minimum turning point consistent with •1 -3 y-intercept correct	-1 $(4,3)$ -2 parabola with minimum turning point consistent with •1 $\bullet^{3}(0,19)$	3

Question		Generic scheme	Illustrative scheme	Max mark
14		Ans: $\frac{x-22}{(x+2)(x-4)}$ -1 correct denominator -2 correct numerator \bullet^{3} remove brackets and collect like terms in numerator	-1 $(x+2)(x-4)$ -2 $4(x-4)-3(x+2)$ -3 $\frac{x-22}{(x+2)(x-4)}$	3
15		Ans: $\sin ^{2} x^{\circ}$ - 1 identify correct trigonometric identity to be used -2 use correct trigonometric identity to simplify expression	- $\frac{\sin x}{\cos x}$ or $\frac{\sin ^{2} x}{\cos ^{2} x}$ - $\frac{\sin ^{2} x}{\cos ^{2} x} \times \cos ^{2} x=\sin ^{2} x$	2
16	(a)	Ans: $r-5$ -1 state expression	-1 $r-5$	1
16	(b)	Ans: $10 \cdot 6$ -1 correct use of Pythagoras' Theorem -2 expand bracket -3 solve equation	- $r^{2}=(r-5)^{2}+9^{2}$ - ${ }^{2} r^{2}=r^{2}-10 r+25+81$ - ${ }^{3} r=10 \cdot 6$	3

[END OF SPECIMEN MARKING INSTRUCTIONS]

