

National 5 Maths Vectors

SQA past paper and specimen paper questions and answers by topic

SQA material is copyright © Scottish Qualifications Authority and has been reproduced by kind permission of SQA.

This resource is free to distribute and use on a non-commercial basis.

Visit Maths.scot for full worked solutions to each of these questions.

National 5 Maths SQA 2014 Paper 1 Question 4

Find the resultant vector
$$2u - v$$
 when $u = \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$ and $v = \begin{pmatrix} 0 \\ -4 \\ 7 \end{pmatrix}$.

Express your answer in component form.

2

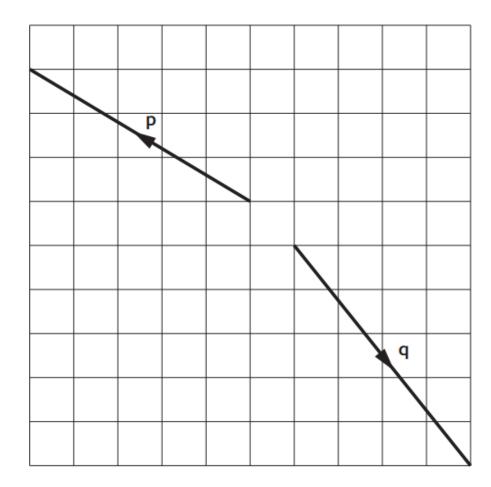
$$\begin{pmatrix} -4 \\ 10 \\ 3 \end{pmatrix}$$

National 5 Maths SQA 2015 Paper 2 Question 4

Find
$$|u|$$
, the magnitude of vector $\mathbf{u} = \begin{pmatrix} 6 \\ -13 \\ 18 \end{pmatrix}$.

2

Answer:


National 5 Maths SQA 2015 Paper 2 Question 5

The vectors \mathbf{p} and \mathbf{q} are shown in the diagram below.

Find the resultant vector $\mathbf{p} + \mathbf{q}$.

Express your answer in component form.

2

Maths.scot

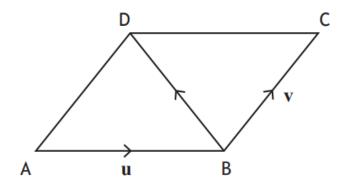
National 5 Maths

National 5 Maths SQA 2016 Paper 1 Question 1

Given
$$p = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$$
 and $q = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$.

Find the resultant vector $\frac{1}{2}\mathbf{p}+\mathbf{q}$.

Express your answer in component form.


2

$$\begin{pmatrix} -3 \\ -4 \end{pmatrix}$$

National 5 Maths SQA 2016 Paper 2 Question 3

The diagram below shows parallelogram ABCD.

 $\overset{\longrightarrow}{\text{AB}}$ represents vector u and $\overset{\longrightarrow}{\text{BC}}$ represents vector v.

Express $\overset{\longrightarrow}{\text{BD}}$ in terms of u and v.

1

Answer:

 $\underline{v} - \underline{u}$

National 5 Maths SQA 2017 Specimen Paper 1 Question 3

Two forces acting on a rocket are represented by vectors \mathbf{u} and \mathbf{v} .

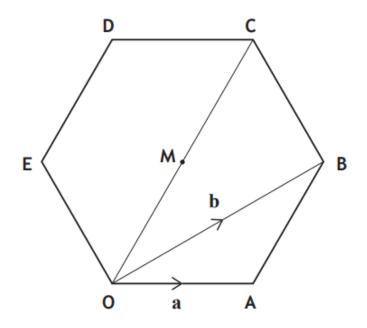
$$\mathbf{u} = \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 7 \\ 4 \\ -1 \end{pmatrix}.$$

Calculate $|\mathbf{u} + \mathbf{v}|$, the magnitude of the resultant force.

Express your answer as a surd in its simplest form.

3

Answer:


 $7\sqrt{2}$

National 5 Maths SQA 2017 Specimen Paper 1 Question 11

In the diagram, OABCDE is a regular hexagon with centre M.

Vectors \mathbf{a} and \mathbf{b} are represented by \overrightarrow{OA} and \overrightarrow{OB} respectively.

(a) Express \overrightarrow{AB} in terms of a and b.

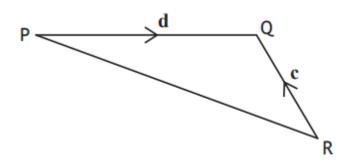
1

(b) Express \overrightarrow{OC} in terms of \mathbf{a} and \mathbf{b} .

- (a) $\underline{b} \underline{a}$ (or equivalent)
- (b) $2(\underline{b} \underline{a})$ or $2\underline{b} 2\underline{a}$ (or equivalent)

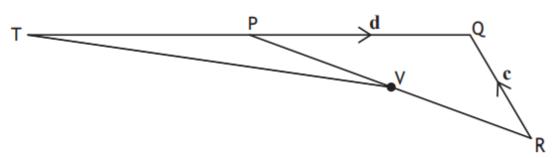
National 5 Maths SQA 2017 Paper 2 Question 1

Find
$$|\mathbf{v}|$$
, the magnitude of vector $\mathbf{v} = \begin{pmatrix} 18 \\ -14 \\ 3 \end{pmatrix}$.


2

Answer:

National 5 Maths SQA 2017 Paper 2 Question 8


In the diagram below, \overrightarrow{RQ} and \overrightarrow{PQ} represent the vectors c and d respectively.

(a) Express \overrightarrow{PR} in terms of c and d.

1

The line QP is extended to T.

- TP = PQ
- · V is the midpoint of PR
- (b) Express \overrightarrow{TV} in terms of \mathbf{c} and \mathbf{d} . Give your answer in simplest form.

2

- (a) $\underline{d} \underline{c}$ (or equivalent)
- (b) $\frac{3}{2} \underline{d} \frac{1}{2} \underline{c}$ (or equivalent)

National 5 Maths SQA 2018 Paper 1 Question 4

Two vectors are given by
$$\mathbf{u} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$$
 and $\mathbf{u} + \mathbf{v} = \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix}$.

Find vector v.

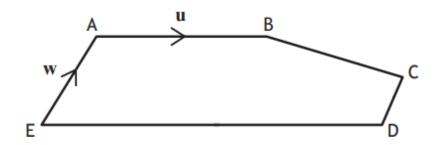
Express your answer in component form.

2

$$\begin{pmatrix} 5 \\ -9 \\ 2 \end{pmatrix}$$

National 5 Maths SQA 2018 Paper 2 Question 3

Find
$$|\mathbf{r}|$$
, the magnitude of vector $\mathbf{r} = \begin{pmatrix} 24 \\ -12 \\ 8 \end{pmatrix}$.


2

Answer:

National 5 Maths SQA 2018 Paper 2 Question 10

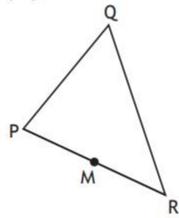
In the diagram below, \overrightarrow{AB} and \overrightarrow{EA} represent the vectors \mathbf{u} and \mathbf{w} respectively.

•
$$\overrightarrow{ED} = 2\overrightarrow{AB}$$

•
$$\overrightarrow{EA} = 2\overrightarrow{DC}$$

Express \overrightarrow{BC} in terms of \mathbf{u} and \mathbf{w} .

Give your answer in its simplest form.


2

$$\underline{\mathbf{u}} - \frac{1}{2} \underline{\mathbf{w}}$$

National 5 Maths SQA 2019 Paper 1 Question 10

In triangle PQR, $\overrightarrow{PR} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$ and $\overrightarrow{RQ} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$.

(a) Express \overrightarrow{PQ} in component form.

1

M is the midpoint of PR.

(b) Express \overrightarrow{MQ} in component form.

2

(a)
$$\begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

(b)
$$\binom{2}{6}$$

National 5 Maths SQA 2019 Paper 2 Question 2

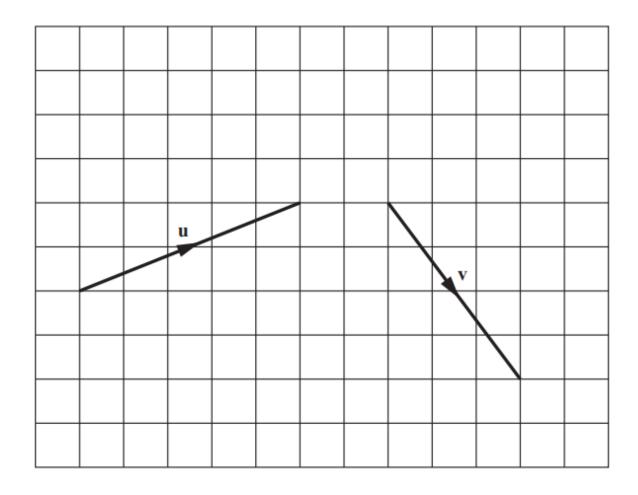
Find
$$|\mathbf{p}|$$
, the magnitude of vector $\mathbf{p} = \begin{pmatrix} 6 \\ 27 \\ -18 \end{pmatrix}$.

2

Answer:

National 5 Maths SQA 2021 Paper 1 Question 1

Calculate
$$|\mathbf{d}|$$
, the magnitude of vector $\mathbf{d} = \begin{pmatrix} 1 \\ -4 \\ 8 \end{pmatrix}$.


2

Answer:

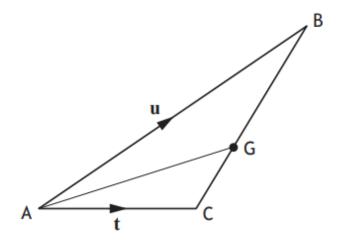
National 5 Maths SQA 2021 Paper 2 Question 5

The vectors ${\bf u}$ and ${\bf v}$ are shown in the diagram below.

Find the resultant vector $\mathbf{u} - \mathbf{v}$.

Express your answer in component form.

2


Answer:

(2)

National 5 Maths SQA 2021 Paper 2 Question 17

The triangle ABC is shown below

$$\overrightarrow{AB} = \mathbf{u}$$
 and $\overrightarrow{AC} = \mathbf{t}$.

G is the point such that $CG = \frac{1}{3}CB$.

Express \overrightarrow{AG} in terms of \mathbf{u} and \mathbf{t} .

Give your answer in simplest form.

3

$$\frac{2}{3}\underline{t} + \frac{1}{3}\underline{u}$$
 (or equivalent)