1. $(3 x-2)\left(2 x^{2}+5 x-1\right)=3 x\left(2 x^{2}+5 x-1\right)-2\left(2 x^{2}+5 x-1\right)$

$$
=6 x^{3}+15 x^{2}-3 x-4 x^{2}-10 x+2
$$

$$
=6 x^{3}+11 x^{2}-13 x+2
$$

2. $215000 \times 1.03^{4}=£ 241984.39$
$\approx £ 242000$
3. Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \pi \times 0.2^{3} \\
& =0.033510 \ldots \mathrm{~m}^{3}
\end{aligned}
$$

Volume of cuboid $=l b h$

$$
\begin{aligned}
& =0.48 \times 0.48 \times 2 \\
& =0.4608 \mathrm{~m}^{3}
\end{aligned}
$$

Total volume

$$
\begin{aligned}
& =0.0335+0.4608 \\
& \approx 0.494 \mathrm{~m}^{3}
\end{aligned}
$$

4. (a) Using m for the cost of a mango and a for the cost of an apple:

$$
\begin{equation*}
4 m+3 a=4.25 \tag{1}
\end{equation*}
$$

(b) $5 m+2 a=4.7$
(c) $8 m+6 a=8.5$ (1) $\times 2 \rightarrow$ (3)

$$
15 m+6 a=14.1(2) \times 3 \rightarrow \text { (4) }
$$

4. (c) Continued.

$$
\begin{aligned}
7 m & =5.6 \quad 4-(3) \\
m & =0.8
\end{aligned}
$$

Substitute into (1):
$4(0.8)+3 a=4.25$

$$
\begin{gathered}
3.2+3 a=4.25 \\
3 a=4.25-3.2 \\
3 a=1.05 \\
a=0.35
\end{gathered}
$$

One mango costs 80 p. One apple costs 35 p.
5. (a) Mean $\bar{x}=\frac{29+27+24+31+22+19+30}{7}=\frac{182}{7}=26$

\boldsymbol{x}	$\boldsymbol{x}-\overline{\boldsymbol{x}}$	${\mathbf{(x}-\overline{\boldsymbol{x}})^{\mathbf{2}}}^{\|c\|}$
29	3	9
27	1	1
24	-2	4
31	5	25
22	-4	16
19	-7	49
30	4	16
Totals:	$\mathbf{0}$	$\mathbf{1 2 0}$

Standard deviation $=\sqrt{\frac{120}{7-1}}=\sqrt{20} \approx 4.47$
(b) On average, the hockey team recorded a higher number of sit-ups.

The hockey team's number of sit-ups was more consistent.
(or equivalent statements)
6. \quad Area $=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& =\frac{1}{2} \times 25 \times 32 \times \sin 58^{\circ} \\
& \approx 339.2 \mathrm{~cm}^{2}
\end{aligned}
$$

7. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& =\frac{-2 \pm \sqrt{4-4 \times 4 \times-7}}{8} \\
& =\frac{-2 \pm \sqrt{4+112}}{8} \\
& =\frac{-2 \pm \sqrt{116}}{8} \\
& \approx-1.6 \text { or } 1.1 \text { (rounded to } 2 \text { s.f.) }
\end{aligned}
$$

8. Using a for the distance from O to the midpoint of AB :

$$
\begin{aligned}
\mathrm{a}^{2} & =2.9^{2}-2^{2} \\
& =8.41-4 \\
& =4.41 \\
\mathrm{a} & =\sqrt{4.41} \\
& =2.1
\end{aligned}
$$

Height $=2.1+2.9=5 \mathrm{~m}$
9. $3 \sin x+4=6$
$3 \sin x=2$
$\sin x=\frac{2}{3}$
Related acute angle $=\sin ^{-1} \frac{2}{3} \approx 41.8^{\circ}$ (to 1 d.p.)
Solutions in $1^{\text {st }}(\mathrm{A})$ and $2^{\text {nd }}(\mathrm{S})$ quadrants, so $x=41.8^{\circ}$ or $x=180-41.8=138.2^{\circ}$
10. Arc length $=\frac{\text { angle }}{360} \times \pi d$

$$
69.4=\frac{x}{360} \times \pi \times 30
$$

$69.4 \times 360=30 \pi x$
$24984=30 \pi x$
$x=24984 \div 30 \pi$
$\approx 265.1^{\circ}$
11. $\mathrm{EC}^{2}=24^{2}+6^{2}+8^{2}$
$=576+36+64$
$=676$
$\mathrm{EC}=\sqrt{676}$
$=26 \mathrm{~cm}$
12. $\frac{2 a b+6 a}{b^{2}-9}=\frac{2 a(b+3)}{(b-3)(b+3)}$

$$
=\frac{2 a}{b-3}
$$

13. $\frac{\sin x^{\circ}+2 \cos x^{\circ}}{\cos x^{\circ}}=\frac{\sin x^{\circ}}{\cos x^{\circ}}+\frac{2 \cos x^{\circ}}{\cos x^{\circ}}$

$$
=\tan x^{\circ}+2
$$

14. $\frac{A C}{\sin 12^{\circ}}=\frac{15}{\sin 16^{\circ}}$
$A C=\frac{15 \sin 12^{\circ}}{\sin 16^{\circ}}=11.3144 \ldots$
$\cos 28^{\circ}=\frac{B C}{11.3144 \ldots}$
$B C=11.3144 \ldots \times \cos 28^{\circ} \approx 9.99 \mathrm{~m}$
