1. 11% depreciation: $100 \%-11 \%=89 \%=0.89$
6% depreciation: $100 \%-6 \%=94 \%=0.94$
$£ 20000 \times 0.89 \times 0.94^{2}=£ 15728.08$
2. $300 \div\left(6.64 \times 10^{-24}\right)=4.51807 \ldots \times 10^{25}$

$$
\approx 4.52 \times 10^{25}
$$

3. Arc length $=\frac{\text { angle }}{360} \times \pi d$

$$
\begin{aligned}
& =\frac{106}{360} \times \pi \times 18.3 \\
& \approx 16.9 \mathrm{~m}
\end{aligned}
$$

4. Sine rule:
$\frac{7}{\sin 25^{\circ}}=\frac{10}{\sin K}$
$7 \sin K=10 \sin 25^{\circ}$
$\sin \mathrm{K}=\frac{10 \sin 25^{\circ}}{7}$
$K=\sin ^{-1} \frac{10 \sin 25^{\circ}}{7}$
$K \approx 37.1^{\circ}$
5. Each central angle in the decagon $=360 \div 10=36^{\circ}$

Each other angle inside the triangles $=(180-36) \div 2=72^{\circ}$
Shaded angle $=360-72-72-90=126^{\circ}$
6. $100 \%+8 \%=108 \%$
108% of the original price $=£ 94500$
1% of the original price $=£ 94500 \div 108=£ 875$
100% of the original price $=£ 875 \times 100=£ 87500$
7. $P=\frac{1}{3} m n-r$
$P+r=\frac{1}{3} m n$
$3(P+r)=m n$
$m=\frac{3(P+r)}{n}$
8. $8^{2}=64$
$4^{2}+7^{2}=16+49=65$
$64 \neq 65$, so by the Converse of Pythagoras, the wall is not perpendicular to the ground.
9. Volume of large pyramid $=\frac{1}{3} \mathrm{Ah}$

$$
\begin{aligned}
& =\frac{1}{3} \times 90^{2} \times(60+48) \\
& =291600 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of small pyramid $=\frac{1}{3} \times 40^{2} \times 48$

$$
=25600 \mathrm{~cm}^{3}
$$

Volume of block

$$
=291600-25600
$$

$$
=266000 \mathrm{~cm}^{3}
$$

10. $\frac{7}{x-3}-\frac{2}{x}=\frac{7 x}{x(x-3)}-\frac{2(x-3)}{x(x-3)}$

$$
=\frac{7 x-2(x-3)}{x(x-3)}
$$

$$
=\frac{7 x-2 x+6}{x(x-3)}
$$

$$
=\frac{5 x+6}{x(x-3)}
$$

11. $\quad 150=20 \cos x+147$
$20 \cos x=3$
$\cos x=\frac{3}{20}$
Related acute angle $=\cos ^{-1} \frac{3}{20} \approx 81.4^{\circ}$ (to 1 d.p.)
Solutions in $1^{\text {st }}(\mathrm{A})$ and $4^{\text {th }}(\mathrm{C})$ quadrants, so $x=81.4^{\circ}$ or $x=360-81.4=278.6^{\circ}$
12. $\frac{x^{2}-16}{x^{2}+x-20}=\frac{(x-4)(x+4)}{(x-4)(x+5)}$

$$
=\frac{x+4}{x+5}
$$

13. $2 \sin ^{2} x+2 \cos ^{2} x=2\left(\sin ^{2} x+\cos ^{2} x\right)$

$$
\begin{aligned}
& =2 \times 1 \\
& =2
\end{aligned}
$$

14. (a) $45=(x+7)(x)(2)$
$45=2 x(x+7)$
$45=2 x^{2}+14 x$
$0=2 x^{2}+14 x-45$
$2 x^{2}+14 x-45=0$
(b) $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& =\frac{-14 \pm \sqrt{14^{2}-4 \times 2 \times-45}}{4} \\
& =\frac{-14 \pm \sqrt{196+360}}{4} \\
& =\frac{-14 \pm \sqrt{556}}{4}
\end{aligned}
$$

$$
\approx 2.4 \text { or }-9.4 \text { (to } 1 \text { d.p.) }
$$

Length cannot be negative, so $x=2.4 \mathrm{~m}$
15. Considering triangle $A B C$:
$\sin A^{\circ}=\frac{8}{18}$
Now considering triangle ADE:
Area $=\frac{1}{2} a b \sin C$
$160=\frac{1}{2} \times(18+6) \times \mathrm{AE} \times \frac{8}{18}$
$160=\frac{16}{3} \mathrm{AE}$
$160 \times 3=16 \mathrm{AE}$
$480=16 \mathrm{AE}$
$\mathrm{AE}=\frac{480}{16}=30 \mathrm{~cm}$

