Quadratic Equations

1. Solve
(a) $x^{2}-5 x-14=0$
(b) $m^{2}-2 m-8=0$
(c) $3 a^{2}-4 a-7=0$
(d) $5 \mathrm{n}^{2}+7 \mathrm{n}=6$
(e) $\mathrm{a}^{2}=10 \mathrm{a}$
(f) $8 x=2 x^{2}$
(g) $\mathrm{n}^{2}=24-2 \mathrm{n}$
(h) $y^{2}+12=7 y$
(i) $1 / 2 x^{2}+2 x-16=0$
(j) $1 / 2 \mathrm{~g}^{2}-3 \mathrm{~g}=8$
(k) $\frac{\mathrm{t}^{2}-8 \mathrm{t}}{5}=4$
(l) $6=\frac{h^{2}-4 h}{2}$
(m) $x^{2}=4(x+3)$
(n) $\mathrm{m}(\mathrm{m}-6)=40$
(o) $(x+3)(x-3)=8 x$
(p) $(a-6)(a+6)=5 a$
2. $\mathrm{P}=\frac{\mathrm{c}^{2}-5 \mathrm{c}}{6}$. Find c given $\mathrm{P}=4$.
3. $\mathrm{A}=\frac{\mathrm{k}^{2}+12 \mathrm{k}}{4}$. If $\mathrm{A}=7$ find k given $\mathrm{k}>0$
4. The number of diagonals, d , in a polygon with n sides is given by the formula

$$
\mathrm{d}=\frac{\mathrm{n}(\mathrm{n}-3)}{2}
$$

A polygon has 20 diagonals. How many sides does it have?
5. Terms of a sequence can be represented as $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}, \ldots \ldots . . \mathrm{u}_{\mathrm{n}}$. The nth term of the sequence can be found by using the formula

$$
\mathrm{u}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2} .
$$

For which term of the sequence is $u_{n}=21$.

