

Mathematics Department

National 5: Vectors

Cumnock Academy

Mathematics Department

1. The vectors **u** and **v** are as stated below:

$$\mathbf{u} = \begin{pmatrix} 1\\4\\6 \end{pmatrix} \qquad \mathbf{v} = \begin{pmatrix} 3\\-2\\4 \end{pmatrix}$$

Find the magnitude of $|\mathbf{u} + \mathbf{v}|$ giving your answer as a surd in its simplest form.

2. Shown below is a parallelogram PQRS with vector $\overrightarrow{PQ} = \mathbf{u}$ and vector $\overrightarrow{PS} = \mathbf{v}$

Find the following vectors in terms of **u** and **v**:

- (a) \overrightarrow{QR} (b) \overrightarrow{SR} (c) \overrightarrow{PR} (d) \overrightarrow{QS} (e) \overrightarrow{PM} (f) \overrightarrow{SM}
- 3. P is the point (6, 4, 2), Q(8, 6, 4) and R(2, 2, 2).
 - (a) Show that $\overrightarrow{OP} = \overrightarrow{RQ}$, where O is the origin.
 - (b) What type of quadrilateral is ABCD?

- 4. A is the point (2, 4, 6), B(7, 5, 0), C(6, 10, -6) and D(1, 9, 0). Show that:
 (a) AB = DC
 (b) |AB| = |BC|
- 5. Solve the following vector equations for **x**:

(a)
$$\mathbf{x} + \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ -1 \end{pmatrix}$$
 (b) $2\mathbf{x} - \begin{pmatrix} -3 \\ 7 \\ -5 \end{pmatrix} = \begin{pmatrix} 11 \\ -9 \\ 17 \end{pmatrix}$

- 6. P is the point (1,-1, 2), Q is (2, 0,-5) and R is (1, 1, 0).
 - (a) Write down the components of **p**, **q** and **r** the position vectors of **P**, **Q** and **R**.
 - (b) Find the vectors:
 - (i) \overrightarrow{QP} (ii) \overrightarrow{QR} (iii) \overrightarrow{PR}
- 7. Use the diagram opposite to name the vector that represents:
 - (a) p r (b) r p (c) t q (d) s t
 - (e) p r q (f) t + r p (g) s p + q

8. Two forces acting on a rocket are represented by vectors **u** and **v**.

$$\mathbf{u} = \begin{pmatrix} 2\\ -5\\ -3 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} 7\\ 4\\ -1 \end{pmatrix}$$

•

Calculate $|\mathbf{u} + \mathbf{v}|$, the magnitude of the resultant force.

Express your answer as a surd in its simplest form.

9. In the diagram, OABCDE is a regular hexagon with centre M. Vectors **a** and **b** are represented by \overrightarrow{OA} and \overrightarrow{OB} respectively.

- (a) Express \overrightarrow{AB} in terms of **a** and **b**.
- (b) Express \overrightarrow{OC} in terms of **a** and **b**.
- 10. ABCDEF is a regular hexagon with centre O.
 - $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{AB} = \mathbf{b}$

 \overrightarrow{OP}

- (a) Find expressions, in terms of **a** and **b**, for
 - (i) \overrightarrow{OB} (ii) \overrightarrow{AC} (iii) \overrightarrow{EC}
- (b) The positions of points P and Q are given by the vectors:

$$= \mathbf{a} - \mathbf{b}$$
 $\overrightarrow{OQ} = \mathbf{a} + 2\mathbf{b}$

- (i) Draw and label the positions of points P and Q on the diagram.
- (ii) Hence, or otherwise, deduce an expression for \overrightarrow{PQ} .

11. The diagram shows a square-based pyramid P, QRST. \overrightarrow{TS} , \overrightarrow{TQ} and \overrightarrow{TP} represent **f**, **g** and **h** respectively.

Express \overrightarrow{RP} in terms of **f**, **g** and **h**.

- 12. A is the point with coordinates (1, -1, 2), B(3, 0, 3) and C(-2, 3, 4). Express \overrightarrow{AB} and \overrightarrow{AC} in component form.
- 13. Vectors \boldsymbol{u} and \boldsymbol{v} are shown in the diagram below.

|QR| = 3|ST|

Find \overrightarrow{PQ} in terms of **u** and **v**.

14. OABC, DEFG is a rectangular prism as show.

OA is 8 units long, OC is 5 units and OD is 7 units. Write down the coordinates of B and G.

15. The rectangular based pyramid D, OABC has vertices A(6, 0, 0), B(6, 8, 0) and (3, 4, 7).

- (a) Write down the coordinates of C.
- (b) Express \overrightarrow{AC} and \overrightarrow{AD} in component form.