Solve the equation $5 \cos x^{\circ} - 3 = 1$, $0 \le x \le 360$.

$$f(x) = 3 \sin x^{\circ}, \qquad 0 \le x < 360$$

- (a) Find f(270).
- (*b*) f(t) = 0.6.

Find the two possible values of t.

Solve the equation

$$2 \tan x^{\circ} + 7 = 0,$$
 $0 \le x \le 360.$

$$0 \le x \le 360$$

Solve the equation

$$4 \tan x^{\circ} + 5 = 0$$
, $0 \le x \le 360$.

Solve the equation $11\cos x^{\circ} - 2 = 3$, for $0 \le x \le 360$.

3

3

3

Emma goes on the "Big Eye".

Her height, \boldsymbol{h} metres, above the ground is given by the formula

$$h = -31\cos t^{\circ} + 33$$

where t is the number of seconds since the start.

- (a) Calculate Emma's height above the ground 20 seconds after the start.
- (b) When will Emma first reach a height of 60 metres above the ground? 3
- (c) When will she next be at a height of 60 metres above the ground?

A Ferris wheel is turning at a steady rate.

The height, h metres, of one of the cars above the ground at a time t seconds is given by the formula

$$h = 7 + 5\sin t^{\circ}$$
.

Find **two** times during the first turn when the car is at a height of 10.8 metres above the ground.