Fractions of a circle

Parts of the circle:

Sector:
A sector of a circle, is the area formed between 2 radii of the circle and the circumference.

Arc:
An arc of a circle, is the part of the circumference cut off by 2 radii of the circle.

Sector angle:
sector angle

The angle between the two radii, that define a sector or an arc.

The Greek letter 'theta' θ is often used to label this angle.

Two useful formulae.

We can calculate the area of a sector.
The area of the sector is the same fraction of the area of the circle, as the sector angle is of 360°
i.e \quad Area of sector $=\frac{\text { sector angle }}{360^{\circ}} \times \pi r^{2}$

We can calculate the length of an arc (arc length).
The length of the arc is the same fraction of the circumference of the circle, as the sector angle is of 360°
i.e \quad Arc length $=\frac{\text { sector angle }}{360^{\circ}} \times \pi d$

Example:

Find the area of the sector OPQ in the following diagram.
Where angle $\mathrm{POQ}=102^{\circ}$
and the radius of the circle is 15 cm .

Area of sector $=\frac{\text { sector angle }}{360^{\circ}} \times \pi r^{2}$
Area of sector $=\frac{102}{360} \times \pi \times 15^{2}=200.276 \ldots=200.3 \mathrm{~cm}^{2}$.

Example:

Find the length of the arc $A B$ in the following diagram.
Where angle $\mathrm{AOB}=75^{\circ}$
and the radius of the circle is 12 cm .

Arc length $=\frac{\text { sector angle }}{360^{\circ}} \times \pi d$
Note we require the diameter. \quad Diameter $=24 \mathrm{~cm}$.
Arc length $=\frac{75}{360} \times \pi \times 24=15.707 \ldots=15.7 \mathrm{~cm}$.

Examples to try:

1. Find the area of the sector EOD, where the sector angle is 125° and the radius of the circle is 22 cm .
2. Find the length of the arc MN, where the sector angle MON is 83° and the radius of the circle is 9 cm .
3. Sector KOL of a circle centre O and radius 15 centimetres is shown opposite.

Calculate the area of this sector.

2. June is replacing the fabric on her garden parasol.

She uses a sector of a circle, with radius 1.2 metres.

Calculate the area of fabric needed to
 replace the old material.
3. A sensor in a security system covers a horizontal area in the shape of a sector of a circle of radius 15 m .

The area of the sector is 200 square metres.
Find the length of the arc of the sector.

4. The diagram shows a sector of a circle, centre, C.
Angle ACB is 160°, and the radius of the circle is 30 cm .

Calculate the length of the arc $A B$.

Solutions:

1. Area of sector $=\frac{40}{360} \times \pi \times 15^{2}=78.5 \mathrm{~cm}^{2}(3 \mathrm{sf})$
2. Area of sector $=\frac{50}{360} \times \pi \times 1.2^{2}=0.63 \mathrm{~m}^{2}(2 \mathrm{sf})$
3. Let angle of sector $=\theta$ So,

$$
200=\frac{\theta}{360} \times \pi \times 15^{2}
$$

Re-arrange to get

$$
\theta=\frac{200 \times 360}{\pi \times 15^{2}}=\frac{320}{\pi}
$$

Length of arc:

$$
\frac{\theta}{360} \times \pi \times 30=\frac{320}{\pi} \times \frac{\pi \times 30}{360}=26.7 \mathrm{~m}
$$

Alternatively, $\frac{\text { arc length }}{\text { circumference }}=\frac{\text { area of sector }}{\text { area of circle }}$
So, $\quad \frac{\text { arc length }}{\pi \times 30}=\frac{200}{\pi \times 15 \times 15}, \quad$ arc length $=\frac{200 \times \pi \times 30}{\pi \times 15 \times 15}$
arc length $=26.7 \mathrm{~m}$
4. Arc length $=\frac{160}{360} \times \pi \times 60=83.8 \mathrm{~cm}(3 \mathrm{sf})$

