Area of a triangle

Recall the formula for the area of a triangle. Area $=\frac{1}{2}$ base \times height However, sometimes we do not have the height. We may have two sides and the angle between them.

$$
\text { Area }=\frac{1}{2} a b \sin C
$$

THEORY

Assume we have sides a, b and angle C.
Drop a perpendicular from B to AC meeting AC at D and let the length of this line be h.

Using our original formula for the Area

we get
Area $=\frac{1}{2}$ base \times height \quad Area $=\frac{1}{2} b \times h$

However, we do not have h.

But, triangle BDC is right angled and so, $\sin C=\frac{h}{a}$
Rearranging this we get: $h=a \sin C$
and substituting in (i) gives \quad Area $=\frac{1}{2} b \times a \sin C$

Which is usually written as

$$
\text { Area }=\frac{1}{2} a b \sin C
$$

This can also be cyclically permuted.

Remember as:

Area of a triangle

Example

Find the area of triangle $A B C$

Using the formula: Area $=\frac{1}{2} a b \sin C$
or remembering
half the two sides multiplied together \times the sine of the angle between them.
or cyclically permute.
Area $=\frac{1}{2} \times 12 \times 22 \times \sin 33^{\circ} \quad$ Area $=71.9 \mathrm{~cm}^{2}$

Past Paper Questions:

1. A field, $A B C$, is shown in the diagram.

Find the area of the field.

[Ans. $\left.=41776.8 \mathrm{~m}^{2}\right]$

