The cosine rule

To use the sine rule, you must have a side and the opposite angle If you have:
(i) two sides and the included angle (SAS)
(ii) three sides (SSS)

The sine rule just won't work.

Examples:

We need a method for handling these two situations.

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

The Cosine Rule

THEORY

In triangle ABC , draw a perpendicular line from B to AC meeting AC at D .

This creates two right angled triangles ABD and BDC

Use Pythagoras in each right angled triangle

In triangle ABD :
$c^{2}=h^{2}+(b-d)^{2}$
simplifying we get
$c^{2}=h^{2}+b^{2}-2 b d+d^{2} \ldots$ (i)

In triangle BDC :
$a^{2}=h^{2}+d^{2}$
Rearranging we get:
$d^{2}=a^{2}-h^{2}$
Replacing d^{2} in (i) gives us

$$
c^{2}=h^{2}+b^{2}-2 b d+a^{2}-h^{2}
$$

which simplifies to $c^{2}=b^{2}-2 b d+a^{2}$
We now need to get rid of d.
Note that we can use $\mathrm{SOH}-\mathrm{CAH}-\mathrm{TOA}$ in triangle BDC
and so we can write: $\cos C=\frac{d}{a}$. Rearranging this gives us $d=a \cos C$
Substituting for d in (iii) we get:
$c^{2}=b^{2}-2 b a \cos C+a^{2}$ and now tidy this up to get:

$$
c^{2}=a^{2}+b^{2}-2 b a \cos C
$$

Since we can do this round the triangle from each vertex, this can cyclically permute the letters.
So we get the usual form:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

This is known as the cosine rule.
Cyclically permuting we get: $\quad b^{2}=c^{2}+a^{2}-2 a c \cos B \quad$ and $\quad c^{2}=a^{2}+b^{2}-2 a b \cos C$

The Cosine Rule

Examples:

SAS

Using the cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
put in the values: $\quad a^{2}=15^{2}+22^{2}-2 \times 15 \times 22 \times \cos 35$

$$
\begin{aligned}
& a^{2}=225+484-660 \times \cos 35 \\
& a^{2}=168.36 \quad \Rightarrow \quad a=\sqrt{168.36} \\
& a=12.98 \text { metres }
\end{aligned}
$$

Example

Which formula do we use for the cosine rule ?
It depends on which angle we are trying to find. Let us try to find angle B.
Then: $\quad b^{2}=c^{2}+a^{2}-2 a c \cos B$
NB the formula sheet also gives this in the form: $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
We will use this formula: $\quad \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
Put in the numbers:

$$
\cos B=\frac{31^{2}+19^{2}-17^{2}}{2 \times 19 \times 31}
$$

Use the calculator: $\quad \cos B=\frac{1033}{1178} \quad$ so $\quad B=\cos ^{-1}\left(\frac{1033}{1178}\right)=28.7^{\circ}$

The Cosine Rule

Negative sign in cos B

You should note, (for reasons that you will learn about later), that
if $\cos \boldsymbol{B}<\mathbf{0}$ i.e. negative,
then ignore the negative sign and subtract the angle you get from 180°
Example: $\quad \cos B=-0.45$
Then: (i) ignore the negative sign.
(ii) Find the acute angle using $B=\cos ^{-1} 0.45=63.3^{\circ}$
(iii) Subtract this from 180. $B=180-63.3 \quad B=116.7^{\circ}$

So B is an obtuse angle, if $\cos B$ is negative.

Past Paper Question

The bonnet of a car is held open, at an angle of 57°, by a metal rod.
In the diagram,
PQ represents the bonnet
PR represents the metal rod.
QR represents the distance from
the base of the bonnet to the front of the car.
$P Q$ is 101 centimetres QR is 98 centimetres

Calculate the length of the metal rod, PR.

Do not use a scale drawing.

Solution:

This is SAS so use cosine rule.
Label the triangle sides p, q, r.
Then:

$$
q^{2}=r^{2}+p^{2}-2 r p \cos Q
$$

Put in numbers: $\quad q^{2}=101^{2}+98^{2}-2 \times 101 \times 98 \times \cos 57^{\circ}$

$$
\begin{aligned}
& q^{2}=19805-19796 \times \cos 57^{\circ} \\
& q^{2}=9023.32 \\
& q=\sqrt{9023.32} \quad q=94.99
\end{aligned}
$$

So length of rod PR is 95 cm

The Cosine Rule

You try this one:

The diagram shows part of a golf course.

The distance $A B$ is 420 metres, the distance AC is 500 metres and angle $B A C=52^{\circ}$.

Calculate the distance BC.
Do not use a scale drawing.
[Ans. $=409.67 \mathrm{~m}$]

And another:

Two yachts leave from harbour H .
Yacht A sails on a bearing of 072° for 30 kilometres and stops.
Yacht B sails on a bearing of 140° for 50 kilometres and stops.

How far apart are the two yachts when they have both stopped?

Do not use a scale drawing.
[Ans. $=47.7 \mathrm{~km}$]

The Cosine Rule

Selecting a Strategy
How do you know whether to use the sine rule, the cosine rule or SOH-CAH-TOA ?

1. Look at the triangle - is it a right angled triangle
if it is - use
SOH-CAH-TOA
2. If it is not right angled:

Are the given values
 or

SSS
if it is then
Cosine Rule.
3. If anything else
then
Sine Rule.

