Factorising Trinomials

Recall FOIL:

Using FOIL we can multiply out two brackets.

$$
(x+3)(x+2) \rightarrow x^{2}+2 x+3 x+6 \rightarrow x^{2}+5 x+6
$$

Now suppose we want to start with $x^{2}+5 x+6$ and put it back into two brackets.
This is another application of factorising. We will discover the reason why we want to do this shortly.

METHOD:

Thinking back to the above example, $x^{2}+5 x+6$
the first term in each bracket must have been $\left(\begin{array}{ll}x &)(x \quad)\end{array}\right.$ since it multiplied out to x^{2} the last terms multiplied out to get +6 ,
so the only possibilities are: 1 and 6 or 2 and 3 and the signs must be,++ or,--
The $5 x$ comes from adding or subtracting the two middle terms.
So possible brackets could be : $\quad\left(\begin{array}{ll}x & 2\end{array}\right)\left(\begin{array}{ll}x & 3\end{array}\right) \quad$ or $\quad\left(\begin{array}{ll}x & 1\end{array}\right)\left(\begin{array}{ll}x & 6\end{array}\right)$
The signs have to be the same,++ or,-- which gives us the possibilities of: $(x+2)(x+3)$ or $(x-2)(x-3)$ or $(x+1)(x+6)$ or $(x-1)(x-6)$

Now only one of these will give us the two middle terms: $+2 x$ and $+3 x$ combining to give $5 x$ and that is: $(x+2)(x+3)$ Now check to see if it works:
$x^{2}+5 x+6 \rightarrow(x+2)(x+3) \quad \rightarrow x^{2}+5 x+6 \quad$ We always check it to see if it works.
$x^{2}+5 x+6$ is called a trinomial. TRI because there are three terms.
This operation is known as factorising a trinomial.

STEPS:

1. Look for first term
2. Look for possible factors for last term
3. Look for a combination that will add or subtract to give middle term (there may be more than one possibility for this).
4. Choose the signs in the bracket $(+/-)(+/-\quad)$ so that
a) The sign of the last term is correct.

This tells you if the signs are the SAME: + + or -- or OPPOSITE: +- or -+
b) When you combine the inner and outer terms you get the middle term.

