Functions

What is a function?

You have seen number machines, also known as function machines.

We apply this to any input x :

And we can write this in a condensed form - known as 'function notation'.

$$
f(x)=4 x+5
$$

This has 3 parts.

A function is simply a rule, to calculate a value from a given input.
$x \quad$ is the input to the function and indicates which letter the rule works on.
$f(x)$ is the value of the function
$4 x+5$ is the rule, that tells you how to calculate the value of the function.

Evaluating a function

Example 1:
Evaluate $f(x)=5 x-3$ when $x=2$
This means calculate $f(2)$

Replace x with 2 in the rule and complete the calculation.
So, $f(2)=5(2)-3 \rightarrow 10-3 \rightarrow 7$
The value of the function is: 7

Example 2:

Given $f(t)=t^{2}+3 t+7$, evaluate $f(-1)$
Replace t with -1 in the rule and complete the calculation.

So, $f(-1)=(-1)^{2}+3(-1)+7$
thus: $f(-1)=1-3+7 \rightarrow 5$

Any letter can be used to indicate a function, it does not have to be f.
Although usually, we tend to use the letters: f, g, h, k

The variable in the function does not have to be x.
Other common variable letters include: y, z, t, u, v

Try these examples:

1. Given that $f(m)=m^{2}-3 m$, evaluate $f(-5)$
2. $h(t)=15 t-3 t^{2}$ Find $h(-2)$ [Ans. = -42]
3. $f(x)=7-4 x$ Evaluate $f(-1)$
[Ans. = 11]

Reverse Functions

Sometimes we are given the output and have to work back to the input.

Example:

A function is given by: $g(x)=7 x-2$
Find the value of a such that $g(a)=19$
Solution:

$$
g(x)=7 x-2 \quad \text { so, } \quad g(a)=7 a-2, \quad \text { but } \quad g(a)=19
$$

Hence: $\quad 19=7 a-2$, solve this equation to find that $a=3$

Try this one:
$f(x)=7-4 x$
(a) Evaluate $f(-2)$
[Ans. = 15]
(b) Given that $f(\mathrm{t})=9$, find t
[Ans. $=-1 / 2$]

