Indices

Indices:

We are already familiar with squares and cubes: e.g. 4^2 , 2^3 etc and their meaning. We are also used to dealing with powers of 10 in standard form. e.g. 2.5×10^6 .

Intuitively we know that: a^3 means $a \times a \times a$

Rules of indices:

Three basic rules:

 $a^m \times a^n = a^{m+n}$ when multiplying – add the indices

e.g. $a^2 \times a^3 \rightarrow (a \times a) \times (a \times a \times a) \rightarrow a^5$

 $a^m \div a^n = a^{m-n}$ when dividing – subtract the indices

e.g. $a^5 \div a^3 \rightarrow \frac{a^5}{a^3} \rightarrow \frac{\cancel{a} \times \cancel{a} \times \cancel{a} \times a \times a}{\cancel{a} \times \cancel{a} \times \cancel{a}} \rightarrow a^2$

 $(a^m)^n = a^{mn}$ when raising to a power – multiply the indices

e.g. $(a^3)^2 \rightarrow (a \times a \times a)^2 \rightarrow (a \times a \times a) \times (a \times a \times a) \rightarrow a^6$

Zero Indices:

What does a^0 mean ?

Using the above rule for multiplying: $a^m \times a^n = a^{m+n}$

then $a^m \times a^0 = a^{m+0} \rightarrow a^m$

so, $a^0 = 1$

Negative Indices:

What does a^{-m} mean ?

Using the above rule for multiplying: $a^m \times a^n = a^{m+n}$

then $a^m \times a^{-m} = a^{m-m} \rightarrow a^0 \rightarrow 1$

So, $a^{-m} = \frac{1}{a^m}$

In general think of a negative index as meaning '1 over'

Fractional Indices:

What does $a^{\frac{m}{n}}$ mean ?

Using the rule for raising powers: $(a^m)^n = a^{mn}$

In particular: $\left(a^{\frac{1}{2}}\right)^2 = a^1 = a$

so $a^{\frac{1}{2}} = \sqrt{a}$

similarly, $a^{\frac{1}{3}} = \sqrt[3]{a}$ (the cube root of a)

In general: $a^{\frac{1}{n}} = \sqrt[n]{a}$

again using the rule: $(a^m)^n = a^{mn}$

we find: $a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$

So, $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$

Applications:

Simplify:
$$2a^2 \times a^3 \rightarrow 2 \times a^{2+3} \rightarrow 2a^5$$

Simplify:
$$\left(c^{5}\right)^{2} \rightarrow c^{5\times2} \rightarrow c^{10}$$

Simplify:
$$\frac{x^3 \times x^4}{x^2}$$
 \rightarrow x^{3+4-2} \rightarrow x^5

Simplify:
$$x^3(x^2+x^4) \rightarrow x^3 \times x^2 + x^3 \times x^4 \rightarrow x^5 + x^7$$

Simplify:
$$n^{-2}(n^3+n) \rightarrow n^{-2} \times n^3 + n^{-2} \times n \rightarrow n+n^{-1} \rightarrow n+\frac{1}{n}$$

Evaluate:
$$8^{\frac{2}{3}}$$
 $\rightarrow (\sqrt[3]{8})^2 \rightarrow (2)^2 \rightarrow 4$

Evaluate:
$$16^{\frac{3}{4}} \longrightarrow \frac{1}{\left(\sqrt[4]{16}\right)^3} \longrightarrow \frac{1}{\left(2\right)^3} \longrightarrow \frac{1}{8}$$

Past Paper Questions:

1. Evaluate
$$27^{\frac{2}{3}}$$

[Ans.
$$(\sqrt[3]{27})^2 \to 3^2 \to 9$$
]

2. Express in its simplest form
$$y^{10} \times (y^4)^{-2}$$

[Ans.
$$y^{10} \times y^{-8} \rightarrow y^2$$
]

3. Simplify
$$a^3(a^{-7} + 5)$$

[Ans.
$$a^3 \times a^{-7} + 5a^3 \rightarrow a^{-4} + 5a^3$$
]

4. Express
$$\frac{3y^5 \times 4y^{-1}}{6y}$$
 in its simplest form.

[Ans.
$$\frac{3 \times 4 \times y^5 \times y^{-1}}{6y} \rightarrow \frac{12 \times y^{5-1}}{6y} \rightarrow \frac{\cancel{12}^2 \times y^4}{\cancel{6}^1 y} \rightarrow 2y^3$$
]

5. Express
$$\frac{y^4 \times y}{y^{-2}}$$
 in its simplest form.

[Ans.
$$\frac{y^{4+1}}{y^{-2}} \rightarrow y^{5-(-2)} \rightarrow y^7$$
]

6. Express
$$\frac{b^{\frac{1}{2}} \times b^{\frac{3}{2}}}{b}$$
 in its simplest form.

[Ans.
$$\frac{b^{\frac{1}{2}} imes b^{\frac{3}{2}}}{b}
ightarrow \frac{b^{\frac{1}{2} + \frac{3}{2}}}{b}
ightarrow \frac{b^2}{b}
ightarrow b$$
]

7. Remove the brackets and simplify
$$b^{\frac{1}{2}} \left(b^{\frac{1}{2}} + b^{-\frac{1}{2}} \right)$$

[Ans.
$$b^{\frac{1}{2}} \left(b^{\frac{1}{2}} + b^{-\frac{1}{2}} \right) \rightarrow b^{\frac{1}{2} + \frac{1}{2}} + b^{\frac{1}{2} + \left(-\frac{1}{2} \right)} \rightarrow b^1 + b^0 \rightarrow b + 1$$
]

8. Remove the brackets and simplify
$$a^{\frac{1}{2}}\left(a+\frac{1}{a}\right)$$

[Ans.
$$a^{\frac{1}{2}} \left(a + \frac{1}{a} \right) \rightarrow a^{\frac{1}{2}} \times a + a^{\frac{1}{2}} \times a^{-1} \rightarrow a^{\frac{3}{2}} + a^{-\frac{1}{2}}$$
]