Indices

Indices:

We are already familiar with squares and cubes: e.g. $4^{2}, 2^{3}$ etc and their meaning.
We are also used to dealing with powers of 10 in standard form. e.g. 2.5×10^{6}.

Intuitively we know that: a^{3} means $a \times a \times a$

Rules of indices:

Three basic rules:

$$
\begin{array}{ll}
a^{m} \times a^{n}=a^{m+n} & \text { when multiplying - add the indices } \\
& \text { e.g. } \quad a^{2} \times a^{3} \rightarrow(a \times a) \times(a \times a \times a) \rightarrow a^{5}
\end{array}
$$

$a^{m} \div a^{n}=a^{m-n} \quad$ when dividing - subtract the indices

$$
\text { e.g. } \quad a^{5} \div a^{3} \rightarrow \frac{a^{5}}{a^{3}} \rightarrow \frac{\not a \times \not a \times \not a \times a \times a}{\not a \times \not a \times \not a} \rightarrow a^{2}
$$

$$
\left(a^{m}\right)^{n}=a^{m n} \quad \text { when raising to a power - multiply the indices }
$$

$$
\text { e.g. }\left(a^{3}\right)^{2} \rightarrow(a \times a \times a)^{2} \rightarrow(a \times a \times a) \times(a \times a \times a) \rightarrow a^{6}
$$

Zero Indices:

What does a^{0} mean?
Using the above rule for multiplying: $\quad a^{m} \times a^{n}=a^{m+n}$

$$
\begin{array}{ll}
\text { then } & a^{m} \times a^{0}=a^{m+0} \rightarrow a^{m} \\
\text { So, } & a^{0}=1
\end{array}
$$

Negative Indices:

What does a^{-m} mean?
Using the above rule for multiplying: $\quad a^{m} \times a^{n}=a^{m+n}$
then $\quad a^{m} \times a^{-m}=a^{m-m} \quad \rightarrow a^{0} \rightarrow 1$
So, $\quad a^{-m}=\frac{1}{a^{m}}$
In general think of a negative index as meaning '1 over'

Fractional Indices:
What does $a^{\frac{m}{n}}$ mean ?
Using the rule for raising powers: $\quad\left(a^{m}\right)^{n}=a^{m n}$
In particular: $\left(a^{\frac{1}{2}}\right)^{2}=a^{1}=a$
so $\quad a^{\frac{1}{2}}=\sqrt{a}$
similarly, $\quad a^{\frac{1}{3}}=\sqrt[3]{a} \quad$ (the cube root of a)

In general:

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

again using the rule: $\quad\left(a^{m}\right)^{n}=a^{m n}$
we find:

$$
a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}
$$

So,

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}
$$

Applications:

Simplify

$$
2 a^{2} \times a^{3}
$$

$$
\rightarrow \quad 2 \times a^{2+3}
$$

$$
\rightarrow \quad 2 a^{5}
$$

Simplify:

$$
\rightarrow c^{5 \times 2}
$$

$$
\rightarrow \quad c^{10}
$$

Simplify: $\quad \frac{x^{3} \times x^{4}}{x^{2}}$

$$
\rightarrow x^{3+4-2} \quad \rightarrow x^{5}
$$

Simplify: $\quad x^{3}\left(x^{2}+x^{4}\right) \quad \rightarrow x^{3} \times x^{2}+x^{3} \times x^{4} \quad \rightarrow x^{5}+x^{7}$
Simplify: $\quad n^{-2}\left(n^{3}+n\right) \quad \rightarrow \quad n^{-2} \times n^{3}+n^{-2} \times n \quad \rightarrow n+n^{-1} \quad \rightarrow n+\frac{1}{n}$

Evaluate: $\quad 8^{\frac{2}{3}} \quad \rightarrow(\sqrt[3]{8})^{2} \rightarrow(2)^{2} \rightarrow 4$
Evaluate: $\quad 16^{-\frac{3}{4}}$
$\rightarrow \frac{1}{(\sqrt[4]{16})^{3}} \rightarrow \frac{1}{(2)^{3}} \rightarrow \frac{1}{8}$

Past Paper Questions:

1. Evaluate $27^{\frac{2}{3}}$
[Ans. $(\sqrt[3]{27})^{2} \rightarrow 3^{2} \rightarrow 9$]
2. Express in its simplest form $y^{10} \times\left(y^{4}\right)^{-2}$
[Ans. $y^{10} \times y^{-8} \rightarrow y^{2}$]
3. Simplify $a^{3}\left(a^{-7}+5\right)$
[Ans. $a^{3} \times a^{-7}+5 a^{3} \rightarrow a^{-4}+5 a^{3}$]
4. Express $\frac{3 y^{5} \times 4 y^{-1}}{6 y}$ in its simplest form.
[Ans. $\frac{3 \times 4 \times y^{5} \times y^{-1}}{6 y} \rightarrow \frac{12 \times y^{5-1}}{6 y} \rightarrow \frac{\not 2^{2} \times y^{4}}{\not \emptyset^{1} y} \rightarrow 2 y^{3}$]
5. Express $\frac{y^{4} \times y}{y^{-2}}$ in its simplest form.
[Ans. $\frac{y^{4+1}}{y^{-2}} \rightarrow y^{5-(-2)} \rightarrow y^{7}$]
6. Express $\frac{b^{\frac{1}{2}} \times b^{\frac{3}{2}}}{b} \quad$ in its simplest form.
[Ans. $\frac{b^{\frac{1}{2}} \times b^{\frac{3}{2}}}{b} \rightarrow \frac{b^{\frac{1}{2}+\frac{3}{2}}}{b} \rightarrow \frac{b^{2}}{b} \rightarrow b$]
7. Remove the brackets and simplify $b^{\frac{1}{2}}\left(b^{\frac{1}{2}}+b^{-\frac{1}{2}}\right)$
[Ans. $\left.b^{\frac{1}{2}}\left(b^{\frac{1}{2}}+b^{-\frac{1}{2}}\right) \rightarrow b^{\frac{1}{2}+\frac{1}{2}}+b^{\frac{1}{2}+\left(-\frac{1}{2}\right)} \rightarrow b^{1}+b^{0} \rightarrow b+1\right]$
8. Remove the brackets and simplify $a^{\frac{1}{2}}\left(a+\frac{1}{a}\right)$
[Ans. $a^{\frac{1}{2}}\left(a+\frac{1}{a}\right) \rightarrow a^{\frac{1}{2}} \times a+a^{\frac{1}{2}} \times a^{-1} \rightarrow a^{\frac{3}{2}}+a^{-\frac{1}{2}}$]
