Appreciation & Depreciation

Percentage Multipliers:

If we wish to increase a quantity by a percentage to a new value, we can:

- 1. Find the percentage of the quantity
- 2. Add it on to the original amount to obtain the new value.

This requires 2 steps.

Example:

Peter earns a salary of £12,000 p.a., this year he gets a 10% rise, what will his new salary be?

His 10% rise is 10% of \pounds 12,000 = \pounds 1,200 His new salary will be \pounds 12,000 + \pounds 1,200 = \pounds 13,200

We can however do this calculation in a single step.

His original salary corresponds to 100%, he gets a rise of 10%, so he now has 100% + 10% = 110% of his original salary.

To find 110% we multiply by $\frac{110}{100}$ which is 1.10

So Peter's new salary is $\pounds12,000 \times 1.1 = \pounds13,200$

Multiplier = $\frac{100 + \% \text{ increase}}{100}$

Examples:

To obtain an increase of:

5%	multiply by 1.05	(105 ÷ 100)
7%	multiply by 1.07	(107 ÷ 100)
20%	multiply by 1.20	(120 ÷ 100)
21/2%	multiply by 1.025	(102.5 ÷ 100)

Try these:

1 50/

Find the multiplier to give an increase of:

15%	[Ans: 1.15]
25%	[Ans: 1.25]
3%	[Ans: 1.03]
171⁄2%	[Ans: 1.175]
8¾%	[Ans: 1.0875]
7.3%	[Ans: 1.073]

Decrease

Similarly, to find a decrease, we subtract from 100.

For example:

To find a decrease of 10%

We want 100% - 10% = 90%, so we multiply by $\frac{90}{100}$ i.e. 0.9

Multiplier = $\frac{100 - \% \text{ increase}}{100}$

Examples:

To obtain an decrease of:

5%	multiply by 0.95	(95 ÷ 100)
7%	multiply by 0.93	(93 ÷ 100)
20%	multiply by 0.80	(80 ÷ 100)
21/2%	multiply by 0.975	(97.5 ÷ 100)

Try these:

Find the multiplier to give an decrease of:

15%	[Ans: 0.85]
25%	[Ans: 0.75]
3%	[Ans: 0.97]
71/2%	[Ans: 0.925]
8¾%	[Ans: 0.9125]
7.3%	[Ans: 0.927]

Definitions:

Appreciation:

A gain or increase in value over time. Items that appreciate in value are:

Buildings, Antiques, Paintings, Jewellery, Works of Art.

Appreciation is usually expressed as a percentage.

Depreciation:

A loss or decrease in value over time. Items that depreciate in value are:

Cars, Machinery, Technology e.g. computers, Furniture.

Depreciation is usually expressed as a percentage.

Use of multipliers:

If a house is valued today at £80,000 and is expected to appreciate by 3% p.a. *(per year)*. Then we can calculate the value after 3 years.

We can calculate year by year.

You should note that appreciation is always calculated on the value at the start of each year, so it is compounded.

Start Value:	Increase	Value at end of year.	
£80,000	£2,400	£82,400	(after 1 year)
£82,400	£2,472	£84,872	(after 2 years)
£84,872	£2,546.16	£87,418.16	(after 3 years)

So value after 3 years is: £87, 418.16

An easier way to calculate is to use the multiplier instead:

An increase of 3% corresponds to a multiplier of 1.03

After 3 years, the house is worth:

£80,000 × 1.03 × 1.03 × 1.03

or	$\pm 80,000 \times 1.03^{3}$	= £87,418.16
		· · · · · · · · · · · · · · · · · · ·

Similarly, we can apply this to depreciation.

Example:	A car is bought new for £15,000 and depreciates at 20% p.a. What is the value of the car after 4 years.
Solution:	The car loses 20% of its value each year, so it is worth only 80% So, multiplier = 0.8
	After 4 years, car is worth:
	$\pounds15,000 \times 0.8 \times 0.8 \times 0.8 \times 0.8$
	or $\pounds 15,000 \times 0.8^4 = \pounds 6,144$

We can have problems involving both appreciation and depreciation:

A factory is valued at £120,000 for the building and £60,000 for the machinery.

If the building appreciates by 5% p.a. and the machinery depreciates by 8% p.a., calculate the total value of the buildings and machinery after 5 years.

Value of building after 5 years: $\pounds 120,000 \times 1.05^5 = \pounds 153,153.79$

Value of machinery after 5 years: $\pounds \ 60,000 \times 0.92^5 = \pounds \ 39,544.89$

Total value of building and machinery: £153,153.79 + £39,544.89 = £192,698.68

We can have problems involving multiple rates of depreciation:

A car is purchased for £20,000.

It is assumed to depreciate by 25% in the 1^{st} year, 20% in the 2^{nd} year and 15% in each of the 3^{rd} and 4^{th} years.

Calculate the value of the car after 4 years.

```
Value of car after 4 years: \pounds 20,000 \times 0.75 \times 0.8 \times 0.85 \times 0.85 = \pounds 8,670
```

The same principles apply to growth (increase) and decay (decrease) problems:

Example of growth:

A colony of bacteria initially contain 25,000 bacteria. It is found that the colony grows at a rate of 35% per hour. What will be the size of the colony after 3 hours.

Size of colony after 3 hours: $25,000 \times 1.35^3 = 61509.375 = 61509$ bacteria.

Example of decay:

A flask contains 5 litres of a chemical.

If it is left open to the air, it is found that the chemical evaporates at a rate of 15% per hour. How much chemical will be left after 5 hours.

After 3 hours: $5,000 \times 0.85^5 = 2218.5$ millilitres.

Past Paper Questions

- Bacteria in a test tube increase at the rate of 0.9% per hour. At 12 noon there are 4500 bacteria. At 3 pm, how many bacteria will be present? Give your answer to 3 significant figures.
- In January 2001, it was estimated that the number of flamingos in a colony was 7000. The number of flamingos is decreasing at the rate of 14% per year. How many flamingos are expected to be in this colony in January 2005 ? Give your answer to the nearest 10.
- In 1999, a house was valued at £70,000 and the contents were valued at £45,000. The value of the house appreciates by 7% each year. The value of the contents depreciates by 9% each year. What will be the total value of the house and contents in 2002 ?
- 4. A factory was put on the market in January 2001.

The site was in an excellent location so the value of the building has appreciated since then by 5.3% per year.

Unfortunately the plant & machinery were poorly maintained and have depreciated by 8.5% per year.

The value of the building was $\pounds435\ 000$ and the value of the plant & machinery was $\pounds156\ 000$ in January 2001.

What would be the expected value of the complete factory in January 2003 ?

5. How much would the Strachans pay for a new iron, priced £16.50 at Watsons ?

WATSON'S SALE $66\frac{2}{2}$ % off everything

Solutions:

- 1. $4500 \times 1.009^3 = 4622.59678...$ 4620 (3 sf)
- 2. $7000 \times 0.86^4 = 3829.0571...$ **3830 (nst 10)**
- House: £ 70 000 × 1.07³ = £ 85 753.01 Contents: £ 45 000 × 0.91³ = £ 33 910.70 Total value: = £ 119 663.71
- Factory: £ 435 000 × 1.053² = £ 482 331.92
 Plant & Mcy: £ 156 000 × 0.915² = £ 130 607.10
 Total value: = £ 612 939.02
- 5. $66^{2}/_{3} \% = {}^{2}/_{3}$ So, ${}^{2}/_{3}$ off means you pay ${}^{1}/_{3}$ They pay ${}^{1}/_{3}$ of £ 16.50 = £ 5.50

Reversing the change:

Quite often we are given the result after a percentage change has been applied, and asked to calculate the original value.

Example:

A ticket is on sale at 40% discount.

Paul paid £9.00 for the ticket.

What was the original price before the discount.

Solution:

i.e.

A 40% discount means that the ticket was sold for 60% of its price.

	60%	is equivalent to	£9.00
So,	1%	is equivalent to	£9.00 ÷ 60
and	100%	is equivalent to	$\pounds 9.00 \div 60 \times 100 = \pounds 15$

Original price of ticket was £15. (You can check this by taking 40% off it)

An alternative (algebraic) solution:

Let the original price be \pounds P		
Then reduce the price by 40%.	\rightarrow	P × 0.6
So:	\rightarrow	$P \times 0.6 = 9.00$
Divide both sides by 0.6	\rightarrow	P = £15.00

Examples:

- 7. A computer is sold for £695. This price includes VAT at 17.5% Calculate the price of the computer **without** VAT.
- During the Christmas Sales a shopkeeper sold 60% of his "Santa Claus Dolls" He then found he was left with 50 dolls. How many dolls had he in stock to begin with ?
- 9. Kerry bought a new car in 1996. When she sold it four years later, she found that it had reduced in value by 60% and she received only £4640. How much had Kerry paid for the car in 1996 ?
- James bought a car last year. It has lost 12.5 % of its value since then. It is now valued at £14 875. How much did James pay for his car.

Solutions:

- 7. Ex-VAT Price × 1.175 = £695 Ex-VAT Price = £695 ÷ 1.175 = **£ 591.49**
- 8. Stock × 0.4 = 50 (60% sold = 40% left) Stock = 50 ÷ 0.4 = 125
- 9. Original Price × 0.4 = £ 4640 Original Price = £ 4640 ÷ 0.4 = £ 11 600
- 10. Original Price × 0.875 = £ 14 875 Original Price = £ 14 875 ÷ 0.875 = £ 17 000