Appreciation \& Depreciation

Percentage Multipliers:

If we wish to increase a quantity by a percentage to a new value, we can:

1. Find the percentage of the quantity
2. Add it on to the original amount to obtain the new value.

This requires 2 steps.

Example:

Peter earns a salary of $£ 12,000$ p.a.,
this year he gets a 10% rise, what will his new salary be?
His 10% rise is 10% of $£ 12,000=£ 1,200$
His new salary will be $£ 12,000+£ 1,200=£ 13,200$
We can however do this calculation in a single step.
His original salary corresponds to 100%, he gets a rise of 10%, so he now has $100 \%+10 \%=110 \%$ of his original salary.

To find 110% we multiply by $\frac{110}{100}$ which is 1.10
So Peter's new salary is $£ 12,000 \times 1.1=£ 13,200$

$$
\text { Multiplier }=\frac{100+\% \text { increase }}{100}
$$

Examples:

To obtain an increase of:
5% multiply by 1.05
(105 $\div 100$)
7% multiply by 1.07
(107 $\div 100$)
20% multiply by 1.20
(120 $\div 100$)
$21 / 2 \%$ multiply by 1.025 (102.5 $\div 100$)

Try these:

Find the multiplier to give an increase of:
15%
25\%
3\%
$171 / 2 \%$
$83 / 4 \%$
7.3\%

Decrease

Similarly, to find a decrease, we subtract from 100.

For example:
To find a decrease of 10%
We want $100 \%-10 \%=90 \%$, so we multiply by $\frac{90}{100}$ i.e. 0.9

$$
\text { Multiplier }=\frac{100-\% \text { increase }}{100}
$$

Examples:

To obtain an decrease of:
5% multiply by $0.95 \quad(95 \div 100)$
$7 \% \quad$ multiply by $0.93 \quad(93 \div 100)$
20% multiply by $0.80 \quad(80 \div 100)$
$21 / 2 \% \quad$ multiply by $0.975 \quad(97.5 \div 100)$

Try these:

Find the multiplier to give an decrease of:
15\%
[Ans: 0.85]
25\%
[Ans: 0.75]
3\%
[Ans: 0.97]
$71 / 2 \%$
[Ans: 0.925]
83/4\%
[Ans: 0.9125]
7.3\%
[Ans: 0.927]

Definitions:

Appreciation:

A gain or increase in value over time. Items that appreciate in value are:
Buildings, Antiques, Paintings, Jewellery, Works of Art.
Appreciation is usually expressed as a percentage.

Depreciation:

A loss or decrease in value over time. Items that depreciate in value are:
Cars, Machinery, Technology e.g. computers, Furniture.
Depreciation is usually expressed as a percentage.

Use of multipliers:

If a house is valued today at $£ 80,000$ and is expected to appreciate by 3% p.a. (per year). Then we can calculate the value after 3 years.
We can calculate year by year.
You should note that appreciation is always calculated on the value at the start of each year, so it is compounded.

Start Value: Increase Value at end of year.

$£ 80,000$	$£ 2,400$	$£ 82,400$	(after 1 year)
$£ 82,400$	$£ 2,472$	$£ 84,872$	(after 2 years)
$£ 84,872$	$£ 2,546.16$	$£ 87,418.16$	(after 3 years)

So value after 3 years is: $£ 87,418.16$

An easier way to calculate is to use the multiplier instead:
An increase of 3% corresponds to a multiplier of 1.03

After 3 years, the house is worth:
$£ 80,000 \times 1.03 \times 1.03 \times 1.03$
or
$£ 80,000 \times 1.03^{3}$
$=£ 87,418.16$

Similarly, we can apply this to depreciation.

Example: \quad A car is bought new for $£ 15,000$ and depreciates at 20% p.a.
What is the value of the car after 4 years.

Solution: The car loses 20% of its value each year, so it is worth only 80\%
So, multiplier $=0.8$
After 4 years, car is worth:

$$
£ 15,000 \times 0.8 \times 0.8 \times 0.8 \times 0.8
$$

or

$$
£ 15,000 \times 0.8^{4}=£ 6,144
$$

We can have problems involving both appreciation and depreciation:

A factory is valued at $£ 120,000$ for the building and $£ 60,000$ for the machinery.
If the building appreciates by 5% p.a. and the machinery depreciates by 8% p.a., calculate the total value of the buildings and machinery after 5 years.

Value of building after 5 years:
$£ 120,000 \times 1.05^{5}=£ 153,153.79$
Value of machinery after 5 years: $£ 60,000 \times 0.92^{5}=£ 39,544.89$
Total value of building and machinery: £153,153.79 $+£ 39,544.89=£ 192,698.68$

We can have problems involving multiple rates of depreciation:

A car is purchased for $£ 20,000$.
It is assumed to depreciate by 25% in the $1^{\text {st }}$ year, 20% in the $2^{\text {nd }}$ year and 15% in each of the $3^{\text {rd }}$ and $4^{\text {th }}$ years.

Calculate the value of the car after 4 years.
Value of car after 4 years: $£ 20,000 \times 0.75 \times 0.8 \times 0.85 \times 0.85=£ 8,670$

The same principles apply to growth (increase) and decay (decrease) problems:

Example of growth:
A colony of bacteria initially contain 25,000 bacteria.
It is found that the colony grows at a rate of 35% per hour.
What will be the size of the colony after 3 hours.

Size of colony after 3 hours: $\quad 25,000 \times 1.35^{3}=61509.375=61509$ bacteria .

Example of decay:

A flask contains 5 litres of a chemical.
If it is left open to the air, it is found that the chemical evaporates at a rate of 15% per hour. How much chemical will be left after 5 hours.

After 3 hours: $\quad 5,000 \times 0.85^{5}=2218.5$ millilitres.

Past Paper Questions

1. Bacteria in a test tube increase at the rate of 0.9% per hour.

At 12 noon there are 4500 bacteria.
At 3 pm , how many bacteria will be present?
Give your answer to 3 significant figures.
2. In January 2001, it was estimated that the number of flamingos in a colony was 7000. The number of flamingos is decreasing at the rate of 14% per year.
How many flamingos are expected to be in this colony in January 2005 ?
Give your answer to the nearest 10.
3. In 1999, a house was valued at $£ 70,000$ and the contents were valued at $£ 45,000$.

The value of the house appreciates by 7% each year.
The value of the contents depreciates by 9% each year.
What will be the total value of the house and contents in 2002 ?
4. A factory was put on the market in January 2001.

The site was in an excellent location so the value of the building has appreciated since then by 5.3% per year.
Unfortunately the plant \& machinery were poorly maintained and have depreciated by 8.5% per year.
The value of the building was $£ 435000$ and the value of the plant \& machinery was $£ 156000$ in January 2001.

What would be the expected value of the complete factory in January 2003 ?
5. How much would the Strachans pay for a new iron, priced $£ 16.50$ at Watsons ?

WATSON'S SALE
$66 \frac{2}{3} \%$ off everything

Solutions:

1. $4500 \times 1.009^{3}=4622.59678 \ldots 4620(3 \mathrm{sf})$
2. $7000 \times 0.86^{4}=3829.0571 \ldots 3830$ (nst 10)
3. House: $£ 70000 \times 1.07^{3}=£ 85753.01$

Contents: $£ 45000 \times 0.91^{3}=£ 33910.70$
Total value: $=£ 119663.71$
4. Factory: $£ 435000 \times 1.053^{2}=£ 482331.92$

Plant \& Mcy: $£ 156000 \times 0.915^{2}=£ 130607.10$
Total value: $=£ 612939.02$
5. $66 \frac{2}{3} \%=\frac{2}{3} \quad$ So, $2 / 3$ off means you pay $1 / 3$

They pay $1 / 3$ of $£ 16.50=£ 5.50$

Reversing the change:

Quite often we are given the result after a percentage change has been applied, and asked to calculate the original value.

Example:

A ticket is on sale at 40% discount.
Paul paid $£ 9.00$ for the ticket.
What was the original price before the discount.

Solution:

A 40% discount means that the ticket was sold for 60% of its price.
i.e.
60% is equivalent to $£ 9.00$
So, $\quad 1 \%$ is equivalent to $£ 9.00 \div 60$
and $\quad 100 \%$ is equivalent to $£ 9.00 \div 60 \times 100=£ 15$
Original price of ticket was $£ 15$. (You can check this by taking 40% off it)

An alternative (algebraic) solution:
Let the original price be $£ P$
Then reduce the price by $40 \% . \quad \rightarrow \quad \mathrm{P} \times 0.6$
So
Divide both sides by $0.6 \quad \rightarrow \quad P=£ 15.00$

Examples:

7. A computer is sold for £695. This price includes VAT at 17.5\% Calculate the price of the computer without VAT.
8. During the Christmas Sales a shopkeeper sold 60% of his "Santa Claus Dolls" He then found he was left with 50 dolls.
How many dolls had he in stock to begin with?
9. Kerry bought a new car in 1996. When she sold it four years later, she found that it had reduced in value by 60% and she received only $£ 4640$. How much had Kerry paid for the car in 1996 ?
10. James bought a car last year. It has lost 12.5% of its value since then.

It is now valued at $£ 14875$.
How much did James pay for his car.

Solutions:
7. Ex-VAT Price $\times 1.175=£ 695$
Ex-VAT Price $=£ 695 \div 1.175=£ 591.49$
8. Stock $\times 0.4=50(60 \%$ sold $=40 \%$ left $)$ Stock $=50 \div 0.4=125$
9. Original Price $\times 0.4=£ 4640$ Original Price $=£ 4640 \div 0.4=£ 11600$
10. Original Price $\times 0.875=£ 14875$

Original Price $=£ 14875 \div 0.875=£ 17000$

