Surds

What is a surd?

A surd is an irrational number in root form.
Irrational number:
A number that cannot be expressed as a simple fraction i.e. $\frac{a}{b}$
You can think of surds as being square roots of numbers that do not have a whole number as the root.

Examples of surds: $\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}, \sqrt{10}$ etc.
the following are not surds:

$$
\sqrt{4}, \sqrt{9}, \sqrt{16}, \sqrt{25}, \sqrt{36}, \sqrt{49} \text { etc. }
$$

as these do have a whole number as their roots.

Surds crop up in many situations in mathematics and we will learn some basic rules to deal with them.

Rules of surds:

$$
\begin{gathered}
\sqrt{a b}=\sqrt{a} \times \sqrt{b} \\
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
\end{gathered}
$$

these are true in both directions.
i.e.

$$
\begin{gathered}
\sqrt{a} \times \sqrt{b}=\sqrt{a b} \\
\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}
\end{gathered}
$$

Applications:

We usually want to simplify expressions involving surds.

Example:

Simplify $\sqrt{75} \quad$ [Hint: look for factors of 75 that are perfect squares; in this case 25]
Solution:

$$
\sqrt{75}=\sqrt{25 \times 3}=\sqrt{25} \times \sqrt{3}=5 \sqrt{3}
$$

Example: \quad Simplify $\sqrt{32}$
Solution:

$$
\sqrt{32}=\sqrt{16 \times 2}=\sqrt{16} \times \sqrt{2}=4 \sqrt{2}
$$

Example: \quad Simplify $\frac{\sqrt{72}}{\sqrt{3}}$
Solution: $\quad \frac{\sqrt{72}}{\sqrt{3}}=\sqrt{\frac{72}{3}}=\sqrt{24}=\sqrt{4 \times 6}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$

Adding and subtracting surds:

Just as in algebra - like terms can be added and subtracted
e.g. Simplify: $5 \sqrt{3}-2 \sqrt{3} \rightarrow 5 \sqrt{3}-2 \sqrt{3} \rightarrow 3 \sqrt{3}$
e.g. Simplify: $4 \sqrt{2}-3 \sqrt{2} \rightarrow 4 \sqrt{2}-3 \sqrt{2} \rightarrow 1 \sqrt{2} \rightarrow \sqrt{2}$
e.g. Simplify: $5 \sqrt{7}+3 \sqrt{7} \quad \rightarrow \quad 5 \sqrt{7}+3 \sqrt{7} \quad \rightarrow 8 \sqrt{7}$
e.g. Simplify: $3 \sqrt{2}+\sqrt{2} \quad \rightarrow \quad 3 \sqrt{2}+\sqrt{2} \rightarrow 4 \sqrt{2}$

Past Paper Questions:

1. Express $\sqrt{50}$ as a surd in its simplest form.

Ans: $\sqrt{25 \times 2} \rightarrow 5 \sqrt{2}$
2. Simplify $\sqrt{48}-3 \sqrt{3}$

Ans: $\sqrt{16 \times 3}-3 \sqrt{3} \rightarrow 4 \sqrt{3}-3 \sqrt{3} \rightarrow \sqrt{3}$
3. Express $\sqrt{32}-\sqrt{2}$ as a surd in its simplest form.

Ans: $\sqrt{32}-\sqrt{2} \rightarrow \sqrt{16 \times 2}-\sqrt{2} \rightarrow 4 \sqrt{2}-\sqrt{2} \rightarrow 3 \sqrt{2}$
5. Express $\sqrt{72}-\sqrt{2}+\sqrt{50}$ as a surd in its simplest form

Ans: $\sqrt{72}-\sqrt{2}+\sqrt{50} \rightarrow \sqrt{36 \times 2}-\sqrt{2}+\sqrt{25 \times 2} \rightarrow 6 \sqrt{2}-\sqrt{2}+5 \sqrt{2} \rightarrow 10 \sqrt{2}$
6. Express $\sqrt{32}+\sqrt{8}$ as a surd in its simplest form.

Ans: $\sqrt{32}+\sqrt{8} \rightarrow \sqrt{16 \times 2}+\sqrt{4 \times 2} \rightarrow 4 \sqrt{2}+2 \sqrt{2} \rightarrow 6 \sqrt{2}$
7. Multiply out the brackets $\sqrt{2}(\sqrt{6}-\sqrt{2})$

Express your answer as a surd in its simplest form.

Ans: $\sqrt{2} \times \sqrt{6}-\sqrt{2} \times \sqrt{2} \rightarrow \sqrt{12}-\sqrt{4} \rightarrow \sqrt{4 \times 3}-2 \rightarrow 2 \sqrt{3}-2$
8. $\quad f(x)=3 \sqrt{x}$

Find the exact value of $f(12)$, giving your answer as a surd, in its simplest form.
Ans: $f(12)=3 \sqrt{12} \rightarrow 3 \sqrt{4 \times 3} \rightarrow 3 \times \sqrt{4} \times \sqrt{3} \rightarrow 6 \sqrt{3}$

Rationalising the denominator:

When we have a surd in the denominator, it is better to simplify it further.
When we remove the surd from the denominator, we are "rationalising the denominator".
e.g. Rationalise the denominator.
$\frac{5}{\sqrt{2}} \quad$ All we do is multiply top and bottom by the surd in the denominator.
$\rightarrow \frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \quad$ which is the same as multiplying by 1
$\rightarrow \frac{5 \sqrt{2}}{\sqrt{2} \times \sqrt{2}} \rightarrow \frac{5 \sqrt{2}}{\sqrt{2 \times 2}} \rightarrow \frac{5 \sqrt{2}}{\sqrt{4}} \rightarrow \frac{5 \sqrt{2}}{2}$
Clearly this will always work since: $\sqrt{a} \times \sqrt{a} \rightarrow \sqrt{a \times a} \rightarrow \sqrt{a^{2}} \rightarrow a$

Examples:

Rationalise the denominators:

1. $\frac{7}{\sqrt{3}}$

$$
\rightarrow \frac{7}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \rightarrow \frac{7 \sqrt{3}}{3}
$$

2. $\frac{1}{\sqrt{6}}$

$$
\rightarrow \frac{1}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \rightarrow \frac{\sqrt{6}}{6}
$$

Past Paper Questions:

1. Express $\frac{3}{\sqrt{5}}$ as a fraction with a rational denominator.
2. Simplify $\frac{\sqrt{3}}{\sqrt{24}}$ Express your answer as a fraction with a rational denominator
3. $\quad f(x)=\frac{3}{\sqrt{x}} \quad$ Find the exact value of $f(2)$

Give your answer as a fraction with a rational denominator.
Solutions:

1. $\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \rightarrow \frac{3 \sqrt{5}}{5}$
2. $\sqrt{\frac{3}{24}} \rightarrow \sqrt{\frac{1}{8}} \rightarrow \frac{1}{\sqrt{4 \times 2}} \rightarrow \frac{1}{2 \sqrt{2}} \rightarrow \frac{1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \rightarrow \frac{\sqrt{2}}{4}$
3. $f(2)=\frac{3}{\sqrt{2}} \rightarrow \frac{3 \sqrt{2}}{\sqrt{2} \sqrt{2}} \rightarrow \frac{3 \sqrt{2}}{2}$
