Trig Equations

Angles greater than 90°

We need to re-define sin, cos and tan to be able to deal with angles greater than 90°.

Instead of defining them in terms of the opposite, adjacent and hypotenuse, we can use the coordinates of a rotating line.

THEORY

A rotating line:

Imagine a line OP of length, r, rotating about the origin in an anti–clockwise direction starting on the x–axis

At any point, the coordinates of P are (x, y)and the angle between the line OP and the positive direction of the x-axis is denoted as θ

In the 1st quadrant we can now define: $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{x}$ Notice that all **3 ratios** are **POSITIVE** in the 1st guadrant.

Now let the line OP move into the 2nd quadrant.

We define $\sin \theta$, $\cos \theta$ and $\tan \theta$ based on the acute angle between the line OP and the x-axis. (angle marked with •)

So in the 2nd quadrant we have: $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{-x}{r}$, $\tan \theta = \frac{y}{-x}$

Notice that only the **sine ratio** is **POSITIVE** in the 2nd quadrant.

Now let the line OP move into the 3rd quadrant.

We define $\sin \theta$, $\cos \theta$ and $\tan \theta$ based on the acute angle between the line OP and the x-axis. (angle marked with •)

So in the 3rd quadrant we have: $\sin \theta = \frac{-y}{r}$, $\cos \theta = \frac{-x}{r}$, $\tan \theta = \frac{-y}{-x}$

Notice that only the tangent ratio is **POSITIVE** in the 3rd quadrant.

$$-x \qquad \theta \\ -y \qquad r \qquad 0 \\ \mathbf{P}(x, y) \qquad \mathbf{P}(x,$$

THEORY continued:

Now let the line OP move into the 4th quadrant.

We define $\sin \theta$, $\cos \theta$ and $\tan \theta$ based on the acute angle between the line OP and the x-axis. (angle marked with •)

So in the 4th quadrant we have: $\sin \theta = \frac{-y}{r}$, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{-y}{x}$

Notice that only the **cosine ratio** is **POSITIVE** in the 4th quadrant.

Summary:

For angles greater than 90°, represented by a line OP the sine, cosine and tangent are defined as the sine, cosine and tangent of the acute angle between OP and the x-axis.

The sign is either positive or negative according to whether the sine, cosine and tangent is positive or negative in that quadrant.

From the above theory:

1 st Quadrant	All were positive
2 nd Quadrant	Sine was positive
3 rd Quadrant	Tangent was positive
4 th Quadrant	Cosine was positive

There is an easy way to remember the signs. All Sinners Take Care			
A quick sketch explains this.	Sine is +	All are +	
	Tangent is +	Cosine is +	

METHOD:

For angles greater than 90°, draw a 4 quadrant axis, and mark on where the angle is.

Mark in the acute angle and calculate it by addition or subtraction using 180° or 360° as appropriate.

Take the sign from: All Sinners Take Care

Some examples will make this clear.

The main application for this result is when we are working back to the angle.

E.g. If $\sin \theta = 0.707$ what is θ

We should look back at the graph at this point and consider where the graph is 0.707

There are two values of θ where $\sin \theta = 0.707$ In the 1st and 2nd quadrants.

This should not be a surprise, as we know that the sign is + in these quadrants.

So, if $\sin \theta = 0.707$ then the acute value of θ is given by: $\theta = \sin^{-1}(0.707)$ $\theta = 45^{\circ}$ Since $\sin \theta = +0.707$, then we have values in 1st and 2nd quadrants

This all seems quite complicated, so we need to simplify it all. We will use some simple rules.

We will be starting with $\sin \theta = \dots$, $\cos \theta = \dots$ or $\tan \theta = \dots$ e.g. $\sin \theta = -0.35$ or $\cos \theta = 0.93$ etc.

Method:

- 1. Ignore the sign
- 2. Use the inverse key on your calculator

i.e. $\sin^{-1}(....)$, $\cos^{-1}(....)$ or $\tan^{-1}(....)$

This will give you the acute angle.

- Now look at the sign, and use ASTC to determine which 2 quadrants the angles must be in
- 4. Mark in the acute angles on your diagram.
- 5. Calculate the actual angles

Example:

 $\tan \theta = 0.56$ Find the possible values of θ

- (1) Ignore the sign (2) find the acute angle $\theta = \tan^{-1} 0.56 \rightarrow \theta = 29.2^{\circ}$ Round to 29°
- (3) tan is +, now use ASTC

Example:

 $\cos\theta = -0.23$ Find the possible values of θ

- (1) Ignore the sign (2) find the acute angle $\theta = \cos^{-1} 0.23 \rightarrow \theta = 76.7^{\circ}$ Round to 77°
- (3) cos is –, now use ASTC

S A (4) Cosine is negative in
$$2^{nd}$$
 and 3^{rd} quadrants.
(5) Acute angle is 77° so actual angles are:
 $180 - 77 = 103° (2^{nd} quadrant)$
and $180 + 77 = 257° (3^{rd} quadrant)$

Example:

 $\sin \theta = -0.88$ Find the possible values of θ

- (1) Ignore the sign (2) find the acute angle $\theta = \sin^{-1} 0.88 \rightarrow \theta = 61.6^{\circ}$ Round to 62°
- (3) sin is –, now use ASTC

Example:

 $\tan \theta = -0.32$ Find the possible values of θ

- (1) Ignore the sign (2) find the acute angle $\theta = \tan^{-1} 0.32 \rightarrow \theta = 17.7^{\circ}$ Round to 18°
- (3) tan is –, now use ASTC

Example:

 $\sin \theta = 0.5$ Find the possible values of θ

- (1) Ignore the sign (2) find the acute angle $\theta = \sin^{-1} 0.5 \rightarrow \theta = 30^{\circ}$
- (3) sin is +, now use ASTC

Example:

 $\cos\theta = 0.75$ Find the possible values of θ

- (1) Ignore the sign (2) find the acute angle $\theta = \cos^{-1} 0.75 \rightarrow \theta = 41.4^{\circ}$ Round to 41°
- (3) cos is +, now use ASTC

- (4) Cosine is positive in 1st and 4th quadrants.
- (5) Acute angle is 41° so actual angles are: 41° (1^{st} quadrant) and $360 - 41 = 319^{\circ}$ (4^{th} quadrant)

Applications:

The applications of this at Standard Grade are in solving simple trig equations.

We will be given an equation, which has to be re-arranged to the form:

 $\sin \theta = \dots, \quad \cos \theta = \dots$ or $\tan \theta = \dots$

once we have done this, then we simply use ASTC as above to find the 2 angles.

Example:

Past Paper Questions:

1. Solve algebraically the equation
$$2+3\sin x^{\circ}=0$$
 for $0 \le x \le 360$
2. Solve algebraically, the equation $7\cos x^{\circ}-2=0$ for $0 \le x \le 360$
3. Solve algebraically, the equation $5\tan x-9=0$, for $0 \le x \le 360$
4. Solve the equation $5\sin x^{\circ}+2=0$, for $0 \le x \le 360$
5. Solve algebraically the equation: $\tan 40^{\circ} = 2\sin x^{\circ}+1$ $0 \le x \le 360$
6. The diagram shows the graph
of $y = \sin x^{\circ}$, $0 \le x \le 360$
a) Write down the coordinates
of point S.
The straight line $y = 0.5$ cuts the
graph at T and P.
b) Find the coordinates of T and P.
7. The diagram shows the graph of
 $y = \cos x^{\circ}$, $0 \le x \le 360$.
a) Write down the coordinates
of point A.
(y) = cosx^{\circ}

The straight line y = -0.5 cuts the graph at B and C.

b) Find the coordinates of B and C.

Solutions follow on the next page.

Solutions:

1.	$2+3\sin x=0 \rightarrow \sin x=-\frac{2}{3}$	S A
	$x = \sin^{-1}\left(\frac{2}{3}\right)$ acute $x = 41.81^{\circ}$	
	$x = 180 + 42 = 222^{\circ} \text{ or } x = 360 - 42 = 318^{\circ}$	1 C
2.	$7\cos x - 2 = 0 \rightarrow \cos x = \frac{2}{7}$	S A
	$x = \cos^{-1}\frac{2}{7}$ acute $x = 73.398^{\circ}$	-
	$x = 73^{\circ} \text{ or } x = 360 - 73 = 287^{\circ}$	T C
3.	$5\tan x - 9 = 0 \rightarrow \tan x = \frac{9}{5}$	S A
	$x = \tan^{-1}\frac{9}{5}$ acute $x = 60.945^{\circ}$	
	$x = 61^{\circ} \text{ or } x = 180 + 61 = 241^{\circ}$	т С
4.	$5\sin x + 2 = 0 \rightarrow \sin x = -\frac{2}{5}$	
	$x = \sin^{-1} \frac{2}{x}$ acute $x = 23.578^{\circ}$	5 A
	5 $x = 180 + 24 = 204^{\circ} \text{ or } x = 360 - 24 = 336^{\circ}$	T C
5.	$\tan 40 = 2\sin x + 1 \rightarrow \sin x = -\frac{0.1609}{2}$	
	$x = \sin^{-1} \frac{0.1609}{100000000000000000000000000000000000$	S A
	$2 = 180 + 5 = 185^{\circ} \text{ or } x = 360 - 5 = 355^{\circ}$	TC
6.	a) S is (90°, 1)	
	b) $\sin x = 0.5$	S A
	$x = \sin^{-1} 0.5 \text{acute } x = 30^{\circ}$	ТС
	$x = 30^{\circ}$ or $x = 180 - 30 = 150^{\circ}$ T is (30°, 0.5) and P is (150°, 0.5)	
7.	a) A is (90°, 0)	
	b) $\cos x = -0.5$	S A
	$x = \cos^{-1} 0.5$ acute $x = 60^{\circ}$	T
	$x = 180 + 60 = 240^{\circ} \text{ or } x = 360 - 60 = 300^{\circ}$	
	B is $(240^{\circ}, -0.5)$ and C is $(300^{\circ}, -0.5)$	