Trig Equations

Angles greater than 90°

We need to re-define sin, cos and tan to be able to deal with angles greater than 90°. Instead of defining them in terms of the opposite, adjacent and hypotenuse, we can use the coordinates of a rotating line.

THEORY

A rotating line:

Imagine a line OP of length, r, rotating about the origin in an anti-clockwise direction starting on the x-axis

At any point, the coordinates of P are (x, y) and the angle between the line OP and the positive direction of the x-axis is denoted as θ

In the $1^{\text {st }}$ quadrant we can now define: $\sin \theta=\frac{y}{r}, \quad \cos \theta=\frac{x}{r}, \quad \tan \theta=\frac{y}{x}$
Notice that all 3 ratios are POSITIVE in the $1^{\text {st }}$ quadrant.

Now let the line OP move into the $2^{\text {nd }}$ quadrant.
We define $\sin \theta, \cos \theta$ and $\tan \theta$ based on the acute angle between the line OP and the x-axis. (angle marked with •)

So in the $2^{\text {nd }}$ quadrant we have: $\sin \theta=\frac{y}{r}, \quad \cos \theta=\frac{-x}{r}, \quad \tan \theta=\frac{y}{-x}$
Notice that only the sine ratio is POSITIVE in the $2^{\text {nd }}$ quadrant.

Now let the line OP move into the $3^{\text {rd }}$ quadrant.
We define $\sin \theta, \cos \theta$ and $\tan \theta$ based on the acute angle between the line OP and the x-axis. (angle marked with •)

$3^{\text {rd }}$ quadrant

So in the $3^{\text {rd }}$ quadrant we have: $\sin \theta=\frac{-y}{r}, \quad \cos \theta=\frac{-x}{r}, \quad \tan \theta=\frac{-y}{-x}$
Notice that only the tangent ratio is POSITIVE in the $3^{\text {rd }}$ quadrant.

THEORY continued:

Now let the line OP move into the $4^{\text {th }}$ quadrant.
We define $\sin \theta, \cos \theta$ and $\tan \theta$ based on the acute angle between the line OP and the x-axis. (angle marked with •)

So in the $4^{\text {th }}$ quadrant we have: $\sin \theta=\frac{-y}{r}, \quad \cos \theta=\frac{x}{r}, \quad \tan \theta=\frac{-y}{x}$
Notice that only the cosine ratio is POSITIVE in the 4th quadrant.

Summary:

For angles greater than 90°, represented by a line OP the sine, cosine and tangent are defined as the sine, cosine and tangent of the acute angle between OP and the x-axis.

The sign is either positive or negative according to whether the sine, cosine and tangent is positive or negative in that quadrant.

From the above theory:

$1^{\text {st }}$ Quadrant	All were positive
$2^{\text {nd }}$ Quadrant	Sine was positive
$3^{\text {rd }}$ Quadrant	Tangent was positive
$4^{\text {th }}$ Quadrant	Cosine was positive

There is an easy way to remember the signs. All Sinners Take Care
A quick sketch explains this.

METHOD:

For angles greater than 90°, draw a 4 quadrant axis, and mark on where the angle is.
Mark in the acute angle and calculate it by addition or subtraction using 180° or 360° as appropriate.

Take the sign from: All Sinners Take Care
e.g. $\sin 150^{\circ}$
acute angle is marked •
and is $180-150=30^{\circ}$
\sin is + in $2^{\text {nd }}$ quadrant

So $\sin 150^{\circ}=\sin 30^{\circ}$
e.g. $\tan 150^{\circ}$
acute angle is marked
and is $180-150=30^{\circ}$
tan is - in $2^{\text {nd }}$ quadrant

So $\tan 150^{\circ}=-\tan 30^{\circ}$
e.g. $\cos 220^{\circ}$
acute angle is marked •
and is $220-180=40^{\circ}$
\cos is - in $3^{\text {rd }}$ quadrant

So $\cos 220^{\circ}=-\cos 40^{\circ}$

The main application for this result is when we are working back to the angle.
E.g. If $\sin \theta=0.707$ what is θ

We should look back at the graph at this point and consider where the graph is 0.707

There are two values of θ where $\sin \theta=0.707$ In the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants.

This should not be a surprise, as we know that the sign is + in these quadrants.

So, if $\sin \theta=0.707$ then the acute value of θ is given by: $\theta=\sin ^{-1}(0.707) \quad \theta=45^{\circ}$ Since $\sin \theta=+0.707$, then we have values in $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants

Use ASTC

So our two angles are: 45° and $180-45=135^{\circ}$

This all seems quite complicated, so we need to simplify it all.
We will use some simple rules.

We will be starting with $\sin \theta=\ldots . . ., \quad \cos \theta=\ldots \ldots . \quad$ or $\tan \theta=\ldots . .$.
e.g. $\sin \theta=-0.35$ or $\cos \theta=0.93$ etc.

Method:

1. Ignore the sign
2. Use the inverse key on your calculator

$$
\text { i.e. } \sin ^{-1}(\ldots), \cos ^{-1}(\ldots) \text { or } \tan ^{-1}(\ldots)
$$

This will give you the acute angle.
3. Now look at the sign, and use ASTC to determine which 2 quadrants the angles must be in
4. Mark in the acute angles on your diagram.
5. Calculate the actual angles

Example:

$\tan \theta=0.56$ Find the possible values of θ
(1) Ignore the sign (2) find the acute angle $\theta=\tan ^{-1} 0.56 \rightarrow \theta=29.2^{\circ}$ - Round to 29°
(3) tan is +, now use ASTC

(4) Tangent is positive in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants.
(5) Acute angle is 29° so actual angles are: $29^{\circ}\left(\right.$ s $^{s t}$ quadrant) and $180+29=209^{\circ}\left(3^{t d}\right.$ quadrant $)$

Example:

$\cos \theta=-0.23$ Find the possible values of θ
(1) Ignore the sign (2) find the acute angle $\theta=\cos ^{-1} 0.23 \rightarrow \theta=76.7^{\circ}$ - Round to 77°
(3) cos is -, now use ASTC

(4) Cosine is negative in $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrants.
(5) Acute angle is 77° so actual angles are:
$180-77=103^{\circ}$ (2 $2^{\text {nd }}$ quadrant $)$
and $180+77=257^{\circ}\left(3^{d d}\right.$ quadrant $)$

Example:

$\sin \theta=-0.88$ Find the possible values of θ
(1) Ignore the sign (2) find the acute angle $\theta=\sin ^{-1} 0.88 \rightarrow \theta=61.6^{\circ}$ - Round to 62°
(3) \sin is - , now use ASTC

(4) Sine is negative in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants.
(5) Acute angle is 62° so actual angles are:
$180+62=242^{\circ}$ ($3^{\text {rd }}$ quadrant)
and $360-77=23^{\circ}\left(4^{\text {th }}\right.$ quadrant $)$

Example:

$\tan \theta=-0.32$ Find the possible values of θ
(1) Ignore the sign (2) find the acute angle $\theta=\tan ^{-1} 0.32 \rightarrow \theta=17.7^{\circ}$ - Round to 18° (3) tan is -, now use ASTC

(4) Tangent is negative in $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants.
(5) Acute angle is 18° so actual angles are:
$180-18=162^{\circ}$ ($2^{\text {nd }}$ quadrant) and $360-18=342^{\circ}\left(4^{\text {th }}\right.$ quadrant)

Example:

$\sin \theta=0.5$ Find the possible values of θ
(1) Ignore the sign (2) find the acute angle $\theta=\sin ^{-1} 0.5 \rightarrow \theta=30^{\circ}$
(3) \sin is +, now use ASTC

(4) Sine is positive in $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants.
(5) Acute angle is 30° so actual angles are:
30° (1t quadrant)
and $180-30=150^{\circ}\left(2^{\text {nd }}\right.$ quadrant $)$

Example:

$\cos \theta=0.75$ Find the possible values of θ
(1) Ignore the sign (2) find the acute angle $\theta=\cos ^{-1} 0.75 \rightarrow \theta=41.4^{\circ}$ - Round to 41°
(3) cos is +, now use ASTC

(4) Cosine is positive in $1^{\text {st }}$ and $4^{\text {th }}$ quadrants.
(5) Acute angle is 41° so actual angles are:
41° (1t quadrant)
and $360-41=319^{\circ}\left(4^{\text {th }}\right.$ quadrant $)$

Applications:

The applications of this at Standard Grade are in solving simple trig equations.
We will be given an equation, which has to be re-arranged to the form:

$$
\sin \theta=\ldots \ldots . \quad \cos \theta=\ldots \ldots . \quad \text { or } \tan \theta=\ldots \ldots .
$$

once we have done this, then we simply use ASTC as above to find the 2 angles.

Example:

Solve the equation $\quad 3 \tan x^{o}+5=0$, for $0 \leq x \leq 360$.
Re-arrange the equation: $3 \tan x^{\circ}+5=0 \rightarrow 3 \tan x^{o}=-5 \rightarrow \tan x^{o}=-\frac{5}{3}$
(1) Ignore the sign (2) find the acute angle $x=\tan ^{-1}\left(\frac{5}{3}\right) \rightarrow x=59.03^{\circ}-$ Round to 59°
(3) tan is -, now use ASTC

Hence: $\quad x=121^{\circ}$ and $x=301^{\circ}$

Example:

The diagram shows part of the graph of $y=\sin x$.

The line $y=0.4$ is drawn
and cuts the graph of $y=\sin x$ at A and B.
Find the x-coordinates of A and B.

We have to solve: $\quad \sin x=0.4$
(1) Ignore the sign (2) find the acute angle $x=\sin ^{-1} 0.4 \rightarrow x=23.6^{\circ}$ - Round to 24°
(3) \sin is +, now use ASTC

(4) Sine is positive in $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants.
(5) Acute angle is 24° so actual angles are:
$24^{\circ}\left(1^{s t}\right.$ quadrant)

$$
\text { and } 180-24=156^{\circ}\left(2^{\text {nd }} \text { quadrant }\right) \quad x_{A}=24^{\circ} x_{B}=156^{\circ}
$$

Past Paper Questions:

1. Solve algebraically the equation $2+3 \sin x^{\circ}=0$ for $0 \leq x \leq 360$
2. Solve algebraically, the equation $7 \cos x^{\circ}-2=0$ for $0 \leq x \leq 360$
3. Solve algebraically, the equation $5 \tan x-9=0$, for $0 \leq x \leq 360$
4. Solve the equation $5 \sin x^{\circ}+2=0$, for $0 \leq x \leq 360$
5. Solve algebraically the equation: $\quad \tan 40^{\circ}=2 \sin x^{\circ}+1 \quad 0 \leq x \leq 360$
6. The diagram shows the graph of $y=\sin x^{\circ}, \quad 0 \leq x \leq 360$
a) Write down the coordinates of point S.

The straight line $y=0.5$ cuts the graph at T and P .
b) Find the coordinates of T and P.

7. The diagram shows the graph of $y=\cos x^{\circ}, 0 \leq x \leq 360$.
a) Write down the coordinates of point A.

The straight line $y=-0.5$ cuts the graph at B and C .

b) Find the coordinates of B and C.

Solutions follow on the next page.

Solutions:

1. $2+3 \sin x=0 \rightarrow \sin x=-\frac{2}{3}$
$x=\sin ^{-1}\left(\frac{2}{3}\right) \quad$ acute $x=41.81 . . \circ$

$x=180+42=222^{\circ}$ or $x=360-42=318^{\circ}$
2. $7 \cos x-2=0 \rightarrow \cos x=\frac{2}{7}$
$x=\cos ^{-1} \frac{2}{7} \quad$ acute $x=73.398 .$.
$x=73^{\circ}$ or $x=360-73=287^{\circ}$

3. $5 \tan x-9=0 \rightarrow \tan x=\frac{9}{5}$
$x=\tan ^{-1} \frac{9}{5} \quad$ acute $x=60.945 . .{ }^{\circ}$
$x=61^{\circ}$ or $x=180+61=241^{\circ}$

4. $5 \sin x+2=0 \rightarrow \sin x=-\frac{2}{5}$
$x=\sin ^{-1} \frac{2}{5} \quad$ acute $x=23.578 . 。$
$x=180+24=204^{\circ}$ or $x=360-24=336^{\circ}$

5. $\tan 40=2 \sin x+1 \rightarrow \sin x=-\frac{0.1609}{2}$
$x=\sin ^{-1} \frac{0.1609}{2} \quad$ acute $x=4.614 .{ }^{\circ}$
$x=180+5=185^{\circ}$ or $x=360-5=355^{\circ}$

6. a) S is $\left(90^{\circ}, 1\right)$
b) $\quad \sin x=0.5$
$x=\sin ^{-1} 0.5 \quad$ acute $x=30^{\circ}$
$x=30^{\circ}$ or $x=180-30=150^{\circ}$

T is $\left(30^{\circ}, 0.5\right)$ and P is $\left(150^{\circ}, 0.5\right)$
7. a) A is $\left(90^{\circ}, 0\right)$
b) $\cos x=-0.5$
$x=\cos ^{-1} 0.5$ acute $x=60^{\circ}$
$x=180+60=240^{\circ}$ or $x=360-60=300^{\circ}$

B is $\left(240^{\circ},-0.5\right)$ and C is $\left(300^{\circ},-0.5\right)$

