COSINE RULE

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

FINDING AN UNKNOWN SIDE

NOTE: requires knowing 2 sides and the angle between them.

Find the length of side BC.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =6^{2}+9^{2}-2 \times 6 \times 9 \times \cos 32^{\circ} \\
a^{2} & =25 \cdot 410 \ldots . . \\
a & =\sqrt{25 \cdot 410 \ldots . .} \\
& =5 \cdot 040 \ldots . \\
B C & \approx 5 \cdot 0 \mathrm{~m}
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

NOTE: requires knowing all 3 sides.

Find the size of angle BAC.

$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{6^{2}+9^{2}-5^{2}}{2 \times 6 \times 9} \\
\cos A & =0 \cdot 85185 \ldots . . \\
A & =\cos ^{-1}(0 \cdot 85185 \ldots . .) \\
& =31.586 \ldots . \\
\angle B A C & \approx 31 \cdot 6^{\circ}
\end{aligned}
$$

