CHAPTER 7: SIMILAR SHAPES

Shapes are similar if they are enlargement or reductions of each other.
(1) the angles remain unchanged - the shapes are equiangular.
and (2) the sides are enlarged or reduced by some scale factor (SF).

Triangles are special:

Enlarge or reduce sides by some scale factor and the two triangles will be equiangular. If triangles are equiangular then they are similar.

SCALING LENGTH

length scale factor, $\mathrm{SF}=\frac{\text { image side }}{\text { original side }} \quad \begin{aligned} & \text { enlargement if } \quad \mathrm{SF}>1 \\ & \text { reduction if } 0<\mathrm{SF}<1\end{aligned}$

Find the value of x.

$S F=\frac{\text { image }}{\text { original }}=\frac{6}{15}=\frac{2}{5} \quad 0<S F<1$ as expected for a reduction
$x=\frac{2}{5} \times 16=6 \cdot 4 \quad$ smaller than 16 as expected for a reduction

SCALING AREA for a 2D shape both length and breadth must be scaled.
length $\mathrm{SF}=\boldsymbol{n}$ area $\mathrm{SF}=\boldsymbol{n}^{2}$

Given that the two shapes shown are similar, find the area of the larger shape.

$$
\begin{array}{rlrl}
\text { length } \mathrm{SF} & =\frac{\text { image }}{\text { original }}=\frac{15}{12}=\frac{5}{4} & & \text { SF }>1 \text { as expected for an enlargement } \\
\text { area } \mathrm{SF} & =\frac{5}{4} \times \frac{5}{4}=\frac{25}{16} & \\
A & =\frac{25}{16} \times 48=75 & \text { bigger than } 48 \text { as expected for an enlargement }
\end{array}
$$

SCALING VOLUME for a 3D shape length, breadth and height must be scaled.

length $\mathbf{S F}=\boldsymbol{n}$

volume $\mathrm{SF}=\boldsymbol{n}^{3}$

Given that the two solids shown are similar find the volume of the smaller solid.

$$
\text { length } \mathrm{SF}=\frac{\text { image }}{\text { original }}=\frac{12}{15}=\frac{4}{5} \quad 0<S F<1 \text { as expected for a reduction }
$$

$$
\text { volume } \mathrm{SF}=\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}=\frac{64}{125}
$$

$$
V=\frac{64}{125} \times 250=128 \quad \text { smaller than } 250 \text { as expected for a reduction }
$$

