
CHAPTER 3: SURDS

NUMBER SETS:

Natural numbers	N =	{1, 2, 3}
Whole numbers	W = {	0, 1, 2, 3}
Integers $Z = \{\dots -3, \dots -3\}$	-2, -1,	0, 1, 2, 3}

Rational numbers, Q, can be written as a division of two integers. Irrational numbers **cannot** be written as a division of two integers.

Real numbers, R, are all rational and irrational numbers.

SURDS ARE IRRATIONAL ROOTS.

For example, $\sqrt{2}$, $\sqrt{\frac{5}{9}}$, $\sqrt[3]{16}$ are surds.

whereas $\sqrt{25}$, $\sqrt{\frac{4}{9}}$, $\sqrt[3]{-8}$ are **not** surds as they are 5, $\frac{2}{3}$ and -2 respectively.

SIMPLIFYING ROOTS:

RULES:
$$\sqrt{mn} = \sqrt{m} \times \sqrt{n}$$
 $\sqrt{\frac{m}{n}} = \frac{\sqrt{m}}{\sqrt{n}}$

(1) Simplify $\sqrt{24} \times \sqrt{3}$

(2) Simplify $\sqrt{72} + \sqrt{48} - \sqrt{50}$

$$\sqrt{24} \times \sqrt{3}$$

$$= \sqrt{72}$$

$$= \sqrt{72}$$

$$= \sqrt{36} \times \sqrt{2}$$

$$= \sqrt{36} \times \sqrt{2}$$

$$= 6 \times \sqrt{2}$$

$$= 6\sqrt{2}$$

$$\sqrt{72} + \sqrt{48} - \sqrt{50}$$

$$= \sqrt{36} \times \sqrt{2} + \sqrt{16} \times \sqrt{3} - \sqrt{25} \times \sqrt{2}$$

$$= 6\sqrt{2} + 4\sqrt{3} - 5\sqrt{2}$$

$$= 6\sqrt{2} - 5\sqrt{2} + 4\sqrt{3}$$

$$= \sqrt{2} + 4\sqrt{3}$$

(3) Remove the brackets and fully simplify:

(a)
$$(\sqrt{3} - \sqrt{2})^2$$

 $= (\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})$
 $= \sqrt{3}(\sqrt{3} - \sqrt{2}) - \sqrt{2}(\sqrt{3} - \sqrt{2})$
 $= \sqrt{3}(\sqrt{3} - \sqrt{2}) - \sqrt{2}(\sqrt{3} - \sqrt{2})$
 $= \sqrt{9} - \sqrt{6} - \sqrt{6} + \sqrt{4}$
 $= 3 - \sqrt{6} - \sqrt{6} + 2$
 $= 5 - 2\sqrt{6}$
(b) $(3\sqrt{2} + 2)(3\sqrt{2} - 2)$
 $= (3\sqrt{2} + 2)(3\sqrt{2} - 2)$
 $= 3\sqrt{2}(3\sqrt{2} - 2) + 2(3\sqrt{2} - 2)$
 $= 9\sqrt{4} - 6\sqrt{2} + 6\sqrt{2} - 4$
 $= 18 - 6\sqrt{2} + 6\sqrt{2} - 4$
 $= 14$

RATIONALISING DENOMINATORS:

Removing surds from the denominator.

Express with a rational denominator:

(1)
$$\frac{4}{\sqrt{6}}$$
 (2) $\frac{\sqrt{3}}{3\sqrt{2}}$

$$=\frac{2\sqrt{6}}{3} \qquad \qquad =\frac{\sqrt{6}}{6}$$