CHAPTER 19: VECTORS

SCALAR quantities have size(magnitude).
VECTOR quantities have size and direction.
eg. time, speed, volume eg. force, velocity

A directed line segment represents a vector.
Vectors can be written in component form as column vectors

$$
\begin{array}{lll}
\overrightarrow{A B}=\binom{4}{0} & \overrightarrow{C D}=\binom{5}{3} & \overrightarrow{E F}=\binom{-3}{-6} \\
\overrightarrow{G H}=\binom{-4}{6} & \overrightarrow{I J}=\binom{0}{-2} &
\end{array}
$$

negative vector, opposite direction

$$
\overrightarrow{H G}=\binom{4}{-6}
$$

SIZE follows from Pyth. Thm
$\mathbf{u}=\binom{a}{b}$
$|\mathbf{u}|=\sqrt{a^{2}+b^{2}}$

$$
|\overrightarrow{G H}|=\sqrt{(-4)^{2}+6^{2}}=\sqrt{52}=2 \sqrt{13} \text { units }
$$

$\overrightarrow{A D}=\overrightarrow{B C}=\binom{3}{4}$
same size and direction same vector \mathbf{u} same component form

ADD/SUBTRACT

by column vectors
add or subtract components.

$$
\binom{-3}{4}+\binom{7}{2}=\binom{4}{6}
$$

by diagram
"head-to-tail" addition

$$
\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}
$$

MULTIPLY by a number
$\mathbf{u}=\binom{a}{b} \quad \mathrm{k} \mathbf{u}=\binom{\mathrm{k} a}{\mathrm{k} b}$
$\overrightarrow{A B}=\binom{2}{1} \quad \overrightarrow{C D}=\binom{8}{4}$
if $\quad \mathbf{v}=\mathrm{ku}$
$\overrightarrow{C D}=4 \overrightarrow{A B}$
then \mathbf{u} and \mathbf{v} are parallel
$C D$ is parallel to $A B$

3D

Vectors in 3D operate in the same way as vectors in 2D.

Points are plotted on 3 mutually perpendicular axes.
$\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ has position vector $\mathbf{p}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

If $\mathbf{u}=\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ find the value of $|\mathbf{v}-2 \mathbf{u}|$.

$$
\begin{aligned}
& \mathbf{v}-2 \mathbf{u}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-2\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-\left(\begin{array}{c}
2 \\
-4 \\
6
\end{array}\right)=\left(\begin{array}{c}
-3 \\
4 \\
-5
\end{array}\right) \\
& |\mathbf{v}-2 \mathbf{u}|=\sqrt{(-3)^{2}+4^{2}+(-5)^{2}}=\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

