SCIENTIFIC NOTATION
 (Standard Form)

1. Write in scientific notation:
(a) 12800
(b) 340000000
(c) 53000
(d) 418200
(e) 340 million
(f) 670000000000
(g) $12 \cdot 8$ million
(h) 710300000
(i) 0.00468
(j) $0 \cdot 000063$
(k) 0.0000000005
(l) 0.000528
(m) 0.00000791
(n) 0.352
(o) 0.000063
(p) $0 \cdot 000000302$
(q) 700×10^{3}
(r) 400×10^{-8}
(s) 61.7×10^{12}
(t) 15×10^{-3}
(u) 0.7×10^{5}
(v) $0 \cdot 003 \times 10^{-4}$
(w) 0.126×10^{9}
(x) 0.075×10^{-7}
2. Write as a normal number:
(a) 7×10^{5}
(b) 3×10^{4}
(c) 4.3×10^{5}
(d) $5 \cdot 2 \times 10^{1}$
(e) 3.45×10^{3}
(f) $5 \cdot 24 \times 10^{7}$
(g) 9.32×10^{2}
(h) $6 \cdot 125 \times 10^{5}$
(i) 4×10^{-5}
(j) 9×10^{-1}
(k) 3.4×10^{-3}
(l) 6.2×10^{-1}
(m) 5.4×10^{-6}
(n) $7 \cdot 26 \times 10^{-4}$
(o) $8 \cdot 62 \times 10^{-5}$
(p) 4.31×10^{-3}

All of the following questions will require a calculator. Write answers both before and after rounding. Write your answers in scientific notation and correct to $\mathbf{3}$ significant figures.
3. (a) $\left(3 \cdot 12 \times 10^{12}\right) \times\left(4 \cdot 65 \times 10^{6}\right)$
(b) $\left(4 \cdot 7 \times 10^{7}\right) \times\left(2 \cdot 16 \times 10^{15}\right)$
(c) $\left(5 \cdot 6 \times 10^{8}\right) \times\left(3 \cdot 17 \times 10^{-4}\right)$
(d) $\left(6 \cdot 3 \times 10^{-14}\right) \times\left(5 \cdot 25 \times 10^{9}\right)$
(e) $\left(2 \cdot 86 \times 10^{-5}\right) \times\left(3 \cdot 4 \times 10^{-9}\right)$
(f) $\left(8.72 \times 10^{-15}\right) \times\left(1.265 \times 10^{-6}\right)$
(g) $\left(7.2 \times 10^{19}\right) \div\left(5 \cdot 7 \times 10^{6}\right)$
(h) $\left(2 \cdot 63 \times 10^{9}\right) \div\left(1 \cdot 9 \times 10^{15}\right)$
(i) $\frac{9 \cdot 15 \times 10^{9}}{4 \cdot 26 \times 10^{-4}}$
(j) $\frac{8 \cdot 5 \times 10^{-8}}{3 \cdot 76 \times 10^{14}}$
(k) $\frac{6 \cdot 4 \times 10^{-12}}{8 \cdot 26 \times 10^{-5}}$
(1) $\frac{5 \cdot 18 \times 10^{-6}}{7 \cdot 25 \times 10^{-15}}$
4. If $A=4.25 \times 10^{3}, B=8.4 \times 10^{9}$ and $C=1.05 \times 10^{-6}$, evaluate:
(a) $A B$
(b) $B C$
(c) A^{2}
(d) C^{2}
(e) $B^{2} C$
(f) $(B C)^{2}$
(g) $\frac{B}{C}$
(h) $\frac{C}{A}$
(i) $\frac{A^{2}}{B}$
(j) $\frac{B}{A C}$
(k) $\frac{A}{C}+B$
(1) $\frac{A}{B}+C$
5. One milligram of hydrogen gas contains $2 \cdot 987 \times 10^{20}$ molecules.

Calculate: (a) the number of molecules in 1.2 grams of hydrogen gas.
(b) the mass, in milligrams, of one molecule of hydrogen.
6. The density of hydrogen at $0^{\circ} \mathrm{C}$ is 8.987×10^{-5} grams for every cubic centimetre.

Calculate: (a) the mass of 3 litres of hydrogen.
(b) the volume, in cubic centimetres, of 6 grams of hydrogen.
7. There are $6 \cdot 022 \times 10^{23}$ atoms in $22 \cdot 4$ litres of helium gas.

This amount of gas has a mass of 4.003 grams.
Calculate: (a) the number of atoms in 1 millilitre of helium gas.
(b) the mass, in grams, of one atom of helium.
8. There are 1650763.73 wavelengths of orange Krypton light in one metre.

So there are $1 \cdot 65076373 \times 10^{6}$ wavelengths in 1 metre.
Calculate: (a) the number of wavelengths in 80 centimetres.
(b) the length in centimetres of 1 wavelength.
9. The second is defined as the duration of 9192631770 periods of the radiation of the caesium atom. So there are $9 \cdot 192631770 \times 10^{9}$ periods in 1 second.
Calculate: (a) the number of periods in 2 minutes.
(b) the time in seconds for 1 period.
10.The surface area of a sphere, radius r , is given by the formula $A=4 \pi r^{2}$.

The Moon is roughly spherical in shape.
The radius of the Moon is 1.738×10^{3} kilometres.
Calculate the surface area of the Moon in square kilometres.

Questions 11 and 12 involve calculating the volume of a sphere.
The volume of a sphere, radius r, is given by the formula $V=\frac{4}{3} \pi r^{3}$.
11. Gases such as helium contain atoms roughly spherical in shape. The radius of an atom of helium is 1.28×10^{-8} centimetres.

Calculate the volume, in cubic centimetres, of one helium atom.
12. The Sun is spherical in shape.

The radius of the Sun is 6.960×10^{5} kilometres.
(a) Calculate the volume of the Sun in cubic kilometres.

The average density of the Sun is 1.409×10^{9} tonnes for every cubic kilometre.
(b) Calculate the mass of the Sun in tonnes.

ANSWERS

1. (a) 1.28×10^{4}
(b) 3.4×10^{8}
(c) 5.3×10^{4}
(d) $4 \cdot 182 \times 10^{5}$
(e) 3.4×10^{8}
(f) 6.7×10^{11}
(i) 4.68×10^{-3}
(j) $6 \cdot 3 \times 10^{-5}$
(m) $7 \cdot 91 \times 10^{-6}$
(n) $3 \cdot 52 \times 10^{-1}$
(q) 7×10^{5}
(r) 4×10^{-6}
(u) 7×10^{4}
(v) 3×10^{-7}
(g) 1.28×10^{7}
(h) $7 \cdot 103 \times 10^{8}$
(k) 5×10^{-10}
(l) $5 \cdot 28 \times 10^{-4}$
(o) 6.3×10^{-5}
(p) 3.02×10^{-7}
(s) $6 \cdot 17 \times 10^{13}$
(t) 1.5×10^{-2}
(w) $1 \cdot 26 \times 10^{8}$
(x) $7 \cdot 5 \times 10^{-9}$
2. (a) 700000
(b) 30000
(e) 3450
(f) 52400000
(i) 0.00004
(j) 0.9
(m) 0.0000054
(n) $0 \cdot 000726$
(c) 430000
(d) 52
(g) 932
(h) 612500
(k) 0.0034
(l) 0.62
(o) 0.0000862
(p) 0.00431
3. (a) $1.4508 \times 10^{19}=1.45 \times 10^{19}$
(b) $1 \cdot 0152 \times 10^{23}=1 \cdot 02 \times 10^{23}$
(c) $1.7752 \times 10^{5}=1.78 \times 10^{5}$
(d) $3 \cdot 3075 \times 10^{-4}=3 \cdot 31 \times 10^{-4}$
(e) $9.724 \times 10^{-14}=9.72 \times 10^{-14}$
(g) $1 \cdot 2631 \ldots . \times 10^{13}=1 \cdot 26 \times 10^{13}$
(f) $1 \cdot 10308 \times 10^{-20}=1 \cdot 10 \times 10^{-20}$
(h) $1 \cdot 3842 \ldots \times 10^{-6}=1 \cdot 38 \times 10^{-6}$
(i) $2 \cdot 1478 \ldots . . \times 10^{13}=2 \cdot 15 \times 10^{13}$
(j) $2 \cdot 2606 \ldots \times 10^{-22}=2 \cdot 26 \times 10^{-22}$
(k) $7 \cdot 7481 \ldots \times 10^{-8}=7 \cdot 75 \times 10^{-8}$
(l) $7 \cdot 1448 \ldots \times 10^{8}=7 \cdot 14 \times 10^{8}$
4. (a) 3.57×10^{13}
(b) 8.82×10^{3}
(c) $1 \cdot 80625 \times 10^{7}=1 \cdot 81 \times 10^{7}$
(d) $1 \cdot 1025 \times 10^{-12}=1 \cdot 10 \times 10^{-12}$
(e) $7.4088 \times 10^{13}=7.41 \times 10^{13}$
(g) 8.00×10^{15}
(i) $2 \cdot 5598 \ldots \times 10^{-13}=2.56 \times 10^{-13}$
(f) $7.77924 \times 10^{7}=7.78 \times 10^{7}$
(h) $2 \cdot 4705 \ldots . \times 10^{-10}=2.47 \times 10^{-10}$
(j) $1 \cdot 8823 \ldots \times 10^{12}=1 \cdot 88 \times 10^{12}$
(k) $1 \cdot 2447 \ldots . \times 10^{10}=1 \cdot 24 \times 10^{10}$
(l) $1 \cdot 5559 \ldots . \times 10^{-6}=1 \cdot 56 \times 10^{-6}$
5. (a) $3 \cdot 5844 \times 10^{23}=3 \cdot 58 \times 10^{23}$ molecules
(b) $3 \cdot 3478 \ldots \times 10^{-21}=3 \cdot 35 \times 10^{-21}$ milligrams
6. (a) $2 \cdot 6961 \ldots . \times 10^{-1}=2 \cdot 70 \times 10^{-1}$ grams
(b) $6 \cdot 6763 \ldots \times 10^{4}=6 \cdot 68 \times 10^{4} \mathrm{~cm}^{3}$
7. (a) $2 \cdot 6883 \ldots \times 10^{19}=2 \cdot 69 \times 10^{19}$ atoms
(b) $6 \cdot 6472 \ldots \times 10^{-24}=6 \cdot 65 \times 10^{-24}$ grams
8. (a) $1 \cdot 3206 \ldots . \times 10^{6}=1 \cdot 32 \times 10^{6}$
(b) $6 \cdot 0578 \ldots \times 10^{-5}=6 \cdot 06 \times 10^{-5}$ metres
9. (a) $1 \cdot 1031 \ldots . \times 10^{12}=1 \cdot 10 \times 10^{12}$
(b) $1 \cdot 0878 \ldots . \times 10^{-10}=1 \cdot 09 \times 10^{-10}$ seconds
10. $3 \cdot 7958 \ldots . \times 10^{7}=3 \cdot 80 \times 10^{7} \mathrm{~km}^{2}$
11. $8 \cdot 7845 \ldots . \times 10^{-24}=8 \cdot 78 \times 10^{-24} \mathrm{~cm}^{3}$
12. (a) $1 \cdot 4122 \ldots \times 10^{18}=1 \cdot 41 \times 10^{18} \mathrm{~km}^{3}$
(b) $1 \cdot 9898 \ldots . \times 10^{77}=1 \cdot 99 \times 10^{27}$ tonnes
