## N5 formulae given in your exam

| Pyramid | $\text { Volume }=\frac{1}{3} A h$ | $A$ is the area of the base $h$ is the vertical height |
| :---: | :---: | :---: |
| Cone | Volume $=\frac{1}{3} \pi r^{2} h$ | $r$ is the radius $h$ is the vertical height |
| Sphere | $\text { Volume }=\frac{4}{3} \pi r^{3}$ |  |
| Quadratic formula | $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ | $a, b$ and $c$ come from $a x^{2}+b x+c$ |
| Area of a triangle | $A=\frac{1}{2} a b \sin C$ | $C$ is the angle between the sides $a$ and $b$. |
| Sine Rule | $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ | Usually only two fractions worked with at one time |
| Cosine rule | $a^{2}=b^{2}+c^{2}-2 b c \cos A$ | Use when finding a side |
| Cosine rule | $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ | Use when finding an angle |
| Standard deviation | $\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$ | Usually requires making a table |
| Standard deviation | $\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$ | Can be faster |

## N5 formulae not given in the exam

| Percentage increase or decrease | $\frac{\text { increase or decrease }}{\text { original amount }} \times 100$ |  |
| :---: | :---: | :---: |
| Find the original amount after a percentage change (calculator) | $\frac{\text { final amount }}{\% \text { change }}$ | e.g. $\frac{\text { final amount }}{1.2}$ will find the original amount after an increase of $20 \%$ |
| Appreciation/depreciation (calculator) | original amount $\times$ percentage ${ }^{n}$ | e.g. amount $\times 1.04^{5}$ calculates an increase of 4\% each year for 5 years ( $\mathrm{n}=$ days, years, etc.) |
| Gradient | $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ | $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are points on the line |
| Straight line | $y=m x+c$ | $m$ represents gradient $c$ is where the line crosses the $y$-axis |
| Straight line | $y-b=m(x-a)$ | $m$ represents gradient and $(a, b)$ is a point on the line. Use when you don't know the $y$ intercept. |
| Minor and Major Arc |  | If you have two points A \& $B$ on a circle, the minor arc is the shortest arc joining them while the major arc is the longest. |
| Arc length | $=\frac{\theta}{360} \times \pi d$ | $\theta$ is the sector angle |


| Sector area | $=\frac{\theta}{360} \times \pi r^{2}$ | $\theta$ is the sector angle |
| :---: | :---: | :---: |
| Sector angle | $\theta=\frac{\operatorname{arc}}{\pi d} \times 360$ | Use when given arc length |
| Sector angle | $\frac{\text { sector }}{\pi r^{2}} \times 360$ | Use when given sector area |
| Scale factor for area | $(\mathrm{lsf})^{2}$ | Isf is the linear scale factor and may be a fraction |
| Scale factor for volume | $(l s f)^{3}$ | Isf is the linear scale factor and may be a fraction |
| Area of a triangle | $A=\frac{1}{2} b h$ | The base $b$ and the height $h$ must meet at $90^{\circ}$ |
| Area of a circle | $A=\pi r^{2}$ | $r$ is the radius |
| Volume of a cylinder | $V=\pi r^{2} h$ | $r$ is radius <br> $h$ is height (or length if the cylinder is horizontal |
| Curved surface area of a cylinder | $A=2 \pi r h$ |  |


| Total surface area of a closed cylinder | $A=2 \pi r h+2 \pi r^{2}$ | This is the curved surface area plus the two circular ends |
| :---: | :---: | :---: |
| Discriminant | $b^{2}-4 a c$ | Use to find the "nature" of the roots for a quadratic equation |
| Nature of roots | $b^{2}-4 a c>0$ | "Two real and distinct roots" |
| Nature of roots | $b^{2}-4 a c=0$ | "One repeated real root" or "two real and distinct roots" |
| Nature of roots | $b^{2}-4 a c<0$ | "No real roots" |
| Pythagoras' Theorem | $a^{2}+b^{2}=c^{2}$ | Use in right-angled triangles to find a missing side length. $c$ is the hypotenuse |
| Right-angled triangle trigonometry | $\sin x=\frac{\text { opposite }}{\text { hypotenuse }}$ | Sides are labelled in relation to the angle you are working with |
| Right-angled triangle trigonometry | $\cos x=\frac{\text { adjacent }}{\text { hypotenuse }}$ | Sides are labelled in relation to the angle you are working with |
| Right-angled triangle trigonometry | $\tan x=\frac{\text { opposite }}{\text { adjacent }}$ | Sides are labelled in relation to the angle you are working with |


| Trig identity | $\sin ^{2} x+\cos ^{2} x=1$ | Be prepared to rearrange this identity |
| :---: | :---: | :---: |
| Trig identity | $\frac{\sin x}{\cos x}=\tan x$ | Be prepared to rearrange this identity |
| Magnitude of a vector | $\|\underset{\sim}{\mathbf{v}}\|=\sqrt{x^{2}+y^{2}+z^{2}}$ | where $\underset{\sim}{\mathbf{v}}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ |
| Find the mean | $\bar{x}=\frac{\sum x}{n}$ | $n$ is the number of data items |
| Semi Interquartile range | $\mathrm{SIQR}=\frac{Q_{3}-Q_{1}}{2}$ | $Q_{3}$ and $Q_{1}$ are upper and lower quartiles respectively |
| Multiplying with indices | $\begin{aligned} & a^{m} \times a^{n}=a^{m+n} \\ & p a^{m} \times q a^{n}=p q a^{m+n} \end{aligned}$ | $a$ is the base <br> Add the indices <br> $p$ and $q$ multiply as usual |
| Dividing with indices | $\begin{aligned} & a^{m} \div a^{n}=a^{m-n} \\ & p a^{m} \div q a^{n}=\frac{p}{q} a^{m-n} \end{aligned}$ | $a$ is the base <br> Subtract the indices $p$ and $q$ divide as usual |
| "Powers of powers" | $\begin{aligned} & \left(a^{m}\right)^{n}=a^{m n} \\ & \left(p a^{m}\right)^{n}=p^{n} a^{m n} \end{aligned}$ | $a$ is the base <br> Multiply the indices $p$ gets raised to the $n^{\text {th }}$ power as usual |
| Important results | $\begin{aligned} & a^{1}=a \\ & a^{0}=1 \end{aligned}$ |  |


| Negative indices | $a^{-m}=\frac{1}{a^{m}}$ | Any term with a negative <br> index can be re-written as <br> a fraction with a positive <br> index and vice-versa |
| :---: | :---: | :---: |
| Fractional indices | $a^{\frac{m}{n}}=\sqrt[n]{a}{ }^{m}$ | Any term with a fractional <br> index can be re-written <br> using a root sign and vice- <br> versa |
| Multiplying surds | $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ |  |
| Dividing surds | $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$ |  |
| Important results | $\sqrt{a} \times \sqrt{a}=a$ |  |
| $\sqrt[3]{a}=a^{\frac{1}{2}}$ |  |  |


| $1^{2}$ | $2^{2}$ | $3^{2}$ | $4^{2}$ | $5^{2}$ | $6^{2}$ | $7^{2}$ | $8^{2}$ | $9^{2}$ | $10^{2}$ | $1^{3}$ | $2^{3}$ | $3^{3}$ | $4^{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 1 | 8 | 27 | 64 |

