N5 formulae given in your exam

Pyramid	Volume $=\frac{1}{3}Ah$	A is the area of the base h is the vertical height					
Cone	Volume $=\frac{1}{3}\pi r^2 h$	<i>r</i> is the radius <i>h</i> is the vertical height					
Sphere	Volume $=\frac{4}{3}\pi r^3$						
Quadratic formula	uadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
Area of a triangle	$A = \frac{1}{2}ab\sin C$	C is the angle between the sides a and b .					
Sine Rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Usually only two fractions worked with at one time					
Cosine rule	$a^2 = b^2 + c^2 - 2bc\cos A$	Use when finding a side					
Cosine rule	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	Use when finding an angle					
Standard deviation	$\sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$	Usually requires making a table					
Standard deviation	$\sqrt{\frac{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}{n-1}}$	Can be faster					

N5 formulae not given in the exam

Percentage increase or decrease	increase or decrease original amount	
Find the original amount after a percentage change (calculator)	final amount % change	e.g. <u>final amount</u> will find 1.2 the original amount after an increase of 20%
Appreciation/depreciation (calculator)	original amount × percentage ⁿ	e.g. amount ×1.04 ⁵ calculates an increase of 4% each year for 5 years (n = days, years, etc.)
Gradient	$m = \frac{y_2 - y_1}{x_2 - x_1}$	(x_1, y_1) and (x_2, y_2) are points on the line
Straight line	y = mx + c	<i>m</i> represents gradient <i>c</i> is where the line crosses the <i>y</i> -axis
Straight line	y-b=m(x-a)	<i>m</i> represents gradient and (a,b) is a point on the line. Use when you don't know the <i>y</i> – intercept.
Minor and Major Arc	A minor ero B major ars	If you have two points A & B on a circle, the minor arc is the shortest arc joining them while the major arc is the longest.
Arc length	$=\frac{\theta}{360}\times\pi d$	heta is the sector angle

Sector area	$=\frac{\theta}{360}\times\pi r^2$	heta is the sector angle				
Sector angle	$\theta = \frac{\operatorname{arc}}{\pi d} \times 360$	Use when given arc length				
Sector angle	$\frac{\text{sector}}{\pi r^2} \times 360$	Use when given sector area				
Scale factor for area	$(lsf)^2$	lsf is the linear scale factor and may be a fraction				
Scale factor for volume	$(lsf)^3$	lsf is the linear scale factor and may be a fraction				
Area of a triangle	$A = \frac{1}{2}bh$	The base b and the height h must meet at 90°				
Area of a circle	$A = \pi r^2$	r is the radius				
Volume of a cylinder	$V = \pi r^2 h$	<i>r</i> is radius <i>h</i> is height (or length if the cylinder is horizontal				
Curved surface area of a cylinder	$A = 2\pi rh$					

Total surface area of a closed cylinder	$A = 2\pi r h + 2\pi r^2$	This is the curved surface area plus the two circular ends				
Discriminant	$b^2 - 4ac$	Use to find the "nature" of the roots for a quadratic equation				
Nature of roots	$b^{2}-4ac>0$	"Two real and distinct roots"				
Nature of roots	$b^2 - 4ac = 0$	"One repeated real root" or "two real and distinct roots"				
Nature of roots	b ² – 4 <i>ac</i> < 0	"No real roots"				
Pythagoras' Theorem	$a^2 + b^2 = c^2$	Use in right-angled triangles to find a missing side length. c is the hypotenuse				
Right-angled triangle trigonometry	$\sin x = \frac{\text{opposite}}{\text{hypotenuse}}$	Sides are labelled in relation to the angle you are working with				
Right-angled triangle trigonometry	$\cos x = \frac{\text{adjacent}}{\text{hypotenuse}}$	Sides are labelled in relation to the angle you are working with				
Right-angled triangle trigonometry	$\tan x = \frac{\text{opposite}}{\text{adjacent}}$	Sides are labelled in relation to the angle you are working with				

Trig identity	$\sin^2 x + \cos^2 x = 1$	Be prepared to rearrange this identity				
Trig identity	$\frac{\sin x}{\cos x} = \tan x$	Be prepared to rearrange this identity				
Magnitude of a vector	$\left \mathbf{\underline{v}}\right = \sqrt{x^2 + y^2 + z^2}$	where $\mathbf{y} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$				
Find the mean	he mean $\overline{x} = \frac{\sum x}{n}$ <i>n</i> is th					
Semi Interquartile range	$SIQR = \frac{Q_3 - Q_1}{2}$	Q_3 and Q_1 are upper and lower quartiles respectively				
Multiplying with indices	$a^m \times a^n = a^{m+n}$ $pa^m \times qa^n = pqa^{m+n}$	<i>a</i> is the base Add the indices <i>p</i> and <i>q</i> multiply as usual				
Dividing with indices	$a^{m} \div a^{n} = a^{m-n}$ $pa^{m} \div qa^{n} = \frac{p}{q}a^{m-n}$	<i>a</i> is the base Subtract the indices <i>p</i> and <i>q</i> divide as usual				
"Powers of powers"	$(a^m)^n = a^{mn}$ $(pa^m)^n = p^n a^{mn}$	<i>a</i> is the base Multiply the indices <i>p</i> gets raised to the <i>n</i> th power as usual				
Important results	$a^{1} = a$ $a^{0} = 1$					

Negative indices	$a^{-m} = \frac{1}{a^m}$	Any term with a negative index can be re-written as a fraction with a positive index and vice-versa
Fractional indices	$a^{\frac{m}{n}} = \sqrt[n]{a}^m$	Any term with a fractional index can be re-written using a root sign and vice- versa
Multiplying surds	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$	
Dividing surds	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	
Important results	$\sqrt{a} \times \sqrt{a} = a$ $\sqrt{a} = a^{\frac{1}{2}}$ $\sqrt[3]{a} = a^{\frac{1}{3}}$ $\sqrt[4]{a} = a^{\frac{1}{4}}$	

1 ²	2 ²	3 ²	4 ²	5²	6 ²	7²	8 ²	9 ²	10 ²	1 ³	2 ³	3 ³	4 ³
1	4	9	16	25	36	49	64	81	100	1	8	27	64